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ABSTRACT

We introduce a fast simple method for computing the real

continuous wavelet transform (CWT).  The approach achieves

O N( )  complexity per scale and the filter coefficients can be

analytically obtained by a simple integration.  Our method is to

use P wavelets per octave and to approximate them with their

oblique projection onto a space defined by a compact scaling

function.  The wavelet templates are expanded to larger sizes

(octaves) using the two-scale relation and zero padded filtering.

Error bounds are presented to justify the use of an oblique

projection over an orthogonal one.

1. INTRODUCTION

We define the CWT of the signal s(t)  as the inner product

Wψs(α,τ) = 1
α

s(t),ψ τ − t

α




 = 1

α
s(t)ψ τ − t

α






−∞

+∞

∫ dt

where α  and τ  are respectively the continuously varying scaling

and shifting parameters, and the real function ψ t( )  is the mother

wavelet.

Fast algorithms exist for computing the wavelet transform

at the dyadic scales when the wavelet is associated with a multi-

resolution [1, 2, 5, 7].  Here we are interested in a finer

sampling of the scale axis.

Previous methods for computing at non-dyadic scales have

either been restricted to a particular scale spacing, wavelet

shape, or implemented with  O N N( log( )) computations per scale

[3, 4, 6, 9, 11].  A method which achieved O N( )  operations

per scale, with no restrictions to the shape of the wavelet, and

with arbitrarily fine exponential sampling along the scale axis

was described in [12].  That method approximated the wavelet

by its orthogonal projection into a space defined by a compact

scaling function.

Here, we introduce an extension of this previous approach

by using an oblique projection to approximate the wavelet.  The

main advantages of the new approach are that it is simpler to

implement and that the filters used in the implementation are

shorter or of a lower order.  The present framework is also more

general since it includes the algorithm in [12] as a special case.

A surprising result is that the increase in speed, flexibility, and

simplicity of the non-orthogonal case is achieved with a

negligible loss in accuracy.

The algorithm consists of an FIR filter bank and a fast

recursive IIR filter.  The system is shown in Fig. 1 where the

additional FIR filter h k( )[ ]↑2i  performs the two scale stretching

of the approximating scaling function that enables us to use the

same FIR filters in computing the CWT for P scales within

each octave.

 2. THE APPROACH

To perform the computation, we will construct a set of P

auxiliary wavelets ψ i t( ) ≅ α i
−1/2 ψ t / α i( ){ }

i =0,...P−1
 which are the

oblique projection of the wavelets α i
−1/2 ψ t / α i( ){ }

i =0,...P−1
 into a

space defined by the compact scaling function ϕ2 orthogonal to

the space defined by the analysis function ϕ1.

An Lth order scaling function is a function ϕ t( ) ∈ L2 that

satisfies the following three conditions:

(i)    0 < A ≤ ϕ̂(ω +2πk)
k∈ Z∑ 2

≤ B < +∞

(ii)   ϕ̂ 0( ) =1,  ϕ̂ m( ) 2πk( ) = 0, k ∈ Z, k ≠ 0 for m = 0,...,L −1

(iii)  ϕ ϕt
h k t k

k Z2




 = −

∈
∑ ( ) ( )

where ˆ ( )ϕ ω  is the Fourier transform of ϕ( )t  and ϕ̂ m( ) 2πk( )  is

the mth derivative of ˆ ( )ϕ ω  evaluated at 2πk .  Property (i)

insures that the subspace V ϕ( ) is a well defined subspace of L2.

Property (ii) implies that  ϕ( )t   reproduces all polynomials of

degree L −1.  Property (iii) is referred to as the two-scale

relation and it allows us to dilate all the wavelet filters by a

power of two.  An analysis function is defined as a function

which satisfies only properties (i) and (ii).  Criteria for the

selection of a scaling or analysis function should be based on its

approximating power, smoothness, and support to name a few.

For a pair of analysis functions ϕ1 and ϕ2, the oblique

projection of the wavelet ψα i
t( ) = ψ t / α i( )  into V ϕ2( )

orthogonal to V ϕ1( )  can be expressed as

ψ i t( ) = pα i
k( )ϕ2 t − k( )

k∈ Z
∑                      (1)
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where pα i
= qα i

∗ q12, qα i
k( ) = ψα i

t( ),ϕ1 t − k( )  and the digital

filter q12 is the convolution inverse of the cross correlation

sequence a12 k( ) = ϕ1 t − k( ),ϕ2 t( ) .  Details of the oblique

projection operator are contained in [10].  Note that we have an

orthogonal projection if ϕ1 t( ) ∈ V ϕ2( ) .

In order to achieve O N( )  complexity per scale, we will

replace the computation of the convolution in the definition of

the CWT  by the approximation

W̃ψs(α i ,τ) = (s∗ψ i )(τ) .                       (2)

Substituting (1) into the above, we have the following

equations:
s0 t( ) = s∗ϕ 2( ) t( )                                    (3)

W̃ψs(α i ,τ) = pα i
k( )s0 τ − k( )

k∈ Z
∑ .          (4)

We then make use of the two-scale relation for ϕ2 given as

property (iii).  This allows us to use the same set of filters for

each octave.

In practice, we have the sample values s k[ ] = s(t) t =k .  To

compute the continuous convolution in (3) we use the

approximation s0 k[ ] ≅ (s∗ b2)(k) where b2 k( ) = ϕ2(t)
t =k

.

Incorporating property (iii) into (4), sampling, and

performing simple algebraic manipulations, we obtain the

following algorithm:
(i) si +1(k) = si ∗ h[ ]↑2i( ) k( )
(ii) s̃i k( ) = si ∗ q12[ ]↑2i( ) k( )

(iii) W̃ψs(2i α j ,k) = s̃i ∗ qα j[ ]↑2i( ) k( ) j = 0,...,P −1

where h[ ]↑2i  is h(k) with 2i −1 zeros between each sample (i.e.

expanded by a factor of 2i ).  Step (i) performs the two-scale

filtering defined by property (iii) for  ϕ2; step (ii) is the

correction filtering which insures that we have an oblique

projection of our wavelet; and step (iii) is the FIR filtering which

constructs the approximated wavelets in terms of the scaling

function and computes the wavelet coefficients.  These

equations describe the algorithm as it is shown in Fig. 1.

3. THE APPROXIMATION ERROR

In the previous section, we replaced the convolution of the CWT

by its approximation (2).  Here we consider the behavior of the

approximation error and show how we can design our algorithm

to maintain the error below an acceptable threshold.  Reduction

of the error is achieved by selecting the appropriate functions
ϕ1 and ϕ2, and adjusting the fine scale resolution α 0 .

The approximation power of a scaling function depends

upon its ability to reproduce polynomials up to a specific degree.

This degree plus one is defined as the order of accuracy of the

approximating function.  The properties of the approximation

error for the orthogonal projection case are given by the Strang-

Fix conditions [8].  We will first describe the relationship

between the oblique and the orthogonal approximation errors,

and then translate this relationship to the Strang-Fix conditions.

The oblique projection into V ϕ2( ) , orthogonal to V ϕ1( ),
is related to the orthogonal projection into V ϕ2( )  by the

following: (cf. [10])

ψα − P2ψα ≤ ψα − P2⊥ 1ψα ≤ 1
cosθ( )

ψα − P2ψα

where P2  is the orthogonal projection operator into V ϕ2( ) , P2⊥ 1

is the oblique projection operator into V ϕ2( )  orthogonal to

V ϕ1( ), and θ is the largest angle between V ϕ1( ) and V ϕ2( ) .

For the Lth order scaling function ϕ2 (cf. condition ii),

the Strang-Fix theory provides us with the relationship

ψα − P2ψα ≤ Cϕ 2

ψ L( )

α L

where the constant Cϕ 2
 is a function of ϕ2 and ψ L( )  is the

norm of the Lth derivative of ψ .  This bound translates to a

bound on the oblique projection in the following fashion

ψα − P2⊥ 1ψα ≤
Cϕ 2

cosθ( )
ψ L( )

α L .                    (5)

In practice, the oblique error is much closer to the

orthogonal error than what is indicated by the above worst case

bound.  In fact, it can be shown that the oblique and orthogonal

errors are asymptotically equivalent as α → ∞ .  Specifically the

approximation error behaves as

ψα − P2⊥ 1ψα = C2

ψ L( )

α L + O
1

α L+1






where L   is again the order of approximation and

C2 = 1
L!

ϕ̂2
L( ) 2πk( )

2

k≠0
∑





1/2

.

Figure 2 displays the approximation error curve for the

cubic LS approximation of a 2nd derivative Gaussian wavelet

and an oblique approximation using the zero and third degree B-

splines for ϕ1 and ϕ2 respectively. The difference between the

LS and oblique errors is very small and they approach the same

asymptote.  In fact, the loss of performance is negligible and the

oblique error is much less than the upper bound in  (5) .

4. IMPLEMENTATION AND RESULTS

In this section, we will summarize the implementation of the

algorithm as a series of steps, each of which are illustrated with

an example.

Step 1:  Select the compactly supported wavelet function for the

particular application.  For illustrative purposes, we consider the

wavelet
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which is a truncated version of the second derivative of a

Gaussian.

Step 2: Select the scaling function ϕ2 and the analysis function

ϕ1.  Here it is advantageous to use B-splines because of their

attractive features:

(i) They are the shortest functions for a given order of 

approximation.

(ii)  They are symmetrical.

(iii) They have a simple analytical form which makes them easy

to manipulate.

(iv) They are smooth well behaved functions.

To keep things as simple as possible but still maintain a

high degree of accuracy, we will use the zero degree B-spline

for ϕ1 and the cubic B-spline for ϕ2.  The advantages of this

particular selection are:

(i) The FIR filters qα i
k( ){ }

i =o,...M −1
 are determined analytically by

simple integration of the wavelet ψ t / α i( ):

qα i
(k) = ψ t / α i( )

k−1/2

k+1/2

∫ dt                     (6)

(ii)  The FIR filters are shorter and the IIR filter is of a lower 
order as compared to the orthogonal projection into V ϕ2( ) .

(iii) The approximation error is very close to the minimum 

which is achieved by the orthogonal projection.

In this case, we gain in simplicity and speed with little loss in

accuracy (cf. error graph in Fig. 2).

Other properties to consider are the approximation power

of the function and the number of vanishing moments desired in

the projected wavelet.  The latter is closely tied to the first and

second step and the former is related to the third step.

Step 3: Select an acceptable error level, and hence a fine scale
resolution α 0 .  This step should actually be performed in

conjunction with the selection of the order of the scaling

function since its power of approximation determines the exact

error characteristics.  For a particular error threshold, one can

compute a plot such as that shown in Fig. 2 to determine an

order of approximation and a fine scale resolution.  We selected

an error threshold of 0.01 which is shown as a dash line in Fig.

2.  This places our fine scale resolution at 1.41.

Step 4: Select the number of scales per octave.  This will set the

number of FIR filters.  We used P=12 scales per octave where

α i = αo2i /12  i = 0,...,11 which corresponds to the musical

notes A A B C C, , , , , ...# #( ).

With these design steps completed, Eq. (6) provides the

means for determining the filter coefficients for the FIR filter

bank.  The remaining FIR filter is the refinement filter h(k).

For a B-spline of degree n, h(k) is the binomial filter

h(k) =
1
2n

n +1

k + (n +1) / 2






;

0 ;







k ≤ (n +1) / 2

otherwise.

The IIR filter q12 is implemented in a fast recursive

fashion.  In the B-spline case, q12 is the filter bn1 +n2 +1( )−1
k( )

where n1 and n2 are the degrees of ϕ1 and ϕ2 respectively.  The

details of this filter are contained in [12].

We implemented the algorithm in MATLAB.  The impulse

response of the system over four octaves is shown in Fig. 3.

We compared the performance of our algorithm to an FFT-based

method which used a radix-2 algorithm when the signal length

was a power of 2 and a mixed radix method for other signal

lengths (MATLAB's FFT algorithm).  The input was an

electroencephalograph signal (EEG).  Fast algorithms for

analyzing such signals are of interest for applications that require

real time detection of brain seizures.

The length of the signal was varied and the time required

to compute four octaves is shown as a function of the signal

length in Fig. 4.  The long dash line represents the FFT

algorithm when the signal was padded to a power of two.  The

solid line with the points is the FFT algorithm for various signal

lengths.  The short dash line, which is the oblique projection

algorithm, clearly demonstrates the O N( )  characteristics of the

method.

5. CONCLUSION

We have introduced a method for the rapid computation of the

CWT.  The algorithm has the following properties:

• It has a complexity of O(N) per scale, which is the lowest

order of complexity.

• The FIR filter coefficients are obtained analytically by

integration of the wavelet.

• The approximation error is simple to control by adjusting the

fine scale resolution or increasing the order of approximation.

• The method is flexible enough to approximate a variety of

wavelet shapes and achieves an arbitrarily fine sampling of the

scale axis.
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si +1 k( ) = si ∗ϕ 2 t / 2i +1( )
t =k

qα 0
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qα j
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qα P −1
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


Fig. 1. System block diagram.
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