0-8186-7919-0/97 $10.00 © 1997 IEEE

PRE-FILTERING FOR THE INITIALIZATION OF MULTI-WAVELET TRANSFORMS

Michael J. Vrhel, Akram Aldroubi

Biomedical Engineering and Instrumentation Program, NCRR, Bldg. 13, Room 3W13
National Institutes of Health, Bethesda, MD 20892 USA

ABSTRACT

We introduce a new method for initializing the multi-wavelet
decomposition algorithm. The approach assumes that the input
signal is contained within some well-defined subspace of L,
(e.g. space of bandlimited functions). The initialization
algorithm is the orthogonal projection of the input signal into the
Unlike an
interpolation approach, the projection method will always have a

space defined by the multi-scaling function.

solution. We provide examples and implementation details.
1. INTRODUCTION

A multi-wavelet algorithm provides flexibility in terms of
wavelet design over a traditional uni-wavelet algorithm (you can
have compactness, orthogonality, symmetry, and regularity for
example) in addition to providing superior energy compaction
[1]. Mathematically, the pre-filtering problem can be expressed
as follows. Let the vector

@ =(9'(x).*(x).9’(x).....9"(x)),
be the multi-scaling function that generates the multi-resolution
spaces

V= {220}(@2% (p'(-JC—,—k) iciely,i= 1,...,r}.

i=t keZ 21 !

The multi-wavelet transform decomposes a signal g(x) € V; as

¢ =3 (k)g'(x— k)

i=l keZ
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where ¥ = (w'(x),\v2(x),\|l3(x),...,\u'(x)) is the multi-wavelet
associated with the multi-resolution spaces V,[1-5]. The multi-
wavelet algorithm requires as input the coefficients cj(k)
i=1,..,r. In practice, we have available only the samples
flk/r}, e.g. a digital image. The initialization problem (pre-
filtering) involves determining the coefficients cj(k) from the
samples f[k/r]. If we assume that f(x) e V,, then the problem
can be posed as an interpolation problem. Otherwise, a more
general approach is necessary. Xia et. al. [1] provides details
on what to do when f(x)e V,. Here we provide a solution to

the problem of pre-filtering when f(x)eV,. The case of
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f(x) e V, is more realistic since we have only samples of f(x)
which are usually not related to the chosen multi-wavelet
transform. These samples are however related to the impulse
response of the acquisition device, which can provide a model
for the signal.

Our pre-filtering operation is simply the orthogonal
projection of the signal into the space defined by the multi-
scaling function. The attractive features of this approach are that
a solution always exists (unlike the interpolation approach
described in [1]) and that we obtain the exact signal if it is
already contained within V| (as is assumed in [1}).

2. PREVIOUS WORK

Assume that samples of the signal f(x) are available. If the
signal f(x) is contained in V,, then the initialization problem
can be considered a problem of interpolating the function

F@) =YY (K)o’ (x—k). M

i=l keZ

Since it is necessary to compute r coefficients for each knot,
f(x) must be sampled at a rate of 1/r, (i.e. f[k/r]).
Expressing (1) in terms of the samples of f(x) provides a
system of convolution equations which can be expressed in
terms of the following matrix convolution

s(k) = (Bxc)(k), @
where the elements of the vectors and matrix are the following
sequences:

[s],(k) = f(k +(i-1)/r),

[B], (k)= ¢’ (k= (i=1)/r),

[e] (k) = co(k),
and the matrix convolution operator is defined as

i=r
[s].(k):= . > [B],(m)[c],(k ~R).
I=1 heZ

The problem is to find the coefficients c;(k) which
involves the inversion (in the convolutional sense) of the matrix-
sequence B(k). A drawback is that this inverse is not
guaranteed to exist (an example will be shown later). Our
approach of finding the coefficients cj(k), which we introduce

next, does not suffer from this problem.



3. ORTHOGONAL PROJECTION METHOD

Again we assume that we have available samples, f[k/r], of

the signal f(x). Unlike the interpolation approach however, we
may assume that f(x) does not belong to V,, but is contained
in some other subspace S(X“,). This subspace should in
principal depend on the impulse response of the device used to
sample f(x). For example, f(x) may be bandlimited and then
sampled, in which case A =sinc would be appropriate [6]. This
subspace S(}», ,,) must have the property that an interpolation
basis exists. If the space does not have this property, then
without additional information about the signal, it is not possible
to obtain the necessary coefficients by linear filtering. The
interpolation property of the space S(X,,,) will allow us to
obtain from samples of f(x) the coefficients e(k) associated
with the decomposition [7]

fx) =Y e(k)A(xr—k),

keZ

where here we assume that S(k”,) is defined by a single
generating function A(x). Since we want to decompose the
signal in terms of @, we would like to find the signal in V| that
best approximates f(x). If our criterion is least squares, then
the solution is the orthogonal projection of f(x) into V.

The approximation that we wish to find is given by

£= 3T csk)g'(x~k).
i=l keZ

The actual signal can be expressed as

= 3 S (ex8.)],, (M

i=l keZ

‘ZZ[ 8l

7&}, (x k—(i— l)/r)

where [b],,(k) = b(kr), A, (x)=M(rx), and §,(k) denotes the
unit impulse sequence located at k =1i.

rx—rk—(i-1))

The approximation f,(x) (or equivalently cj(k)
i=1,...,r) is found by solving the orthogonality condition

- 3,(k)

(k)

Sy —m=(r,,, Y (k)

__>®_..
= 5, (k) —>@—> .

(F() - £, ()0 (x=k)=0 i=l..,r, keZ
These equations can be expressed in the following matrix
convolution format

(A*c)(k) = (D*e)(k)
where

[A),(k) = (9'*¢™ )(k);

[e]. (k) = c5(k);

[D], (k) = (A, *™ )(k);

[e]. (k) =[(e*3,)], (K);

¢"(x)='(-x);

M/r(x) = ;"l/r(x - (J - 1) / r)'

The coefficients cj(k) are obtained by inverting the matrix-
sequence A(k). Unlike the interpolation approach, the
convolution-inverse of A(k) is guaranteed to exist since @ is a
Riesz basis of V, [8]. Thus, the orthogonal projection is

o(k) =((A) ' *Dxe)(k).
A system diagram is shown in Figure 1. The filter ( ,,,) (k) is
the convolution inverse of the discrete filter A,, (k) [7]. In the

next section, we provide an example implementation.

4. IMPLEMENTATION AND RESULTS

To demonstrate the usefulness of our method, we consider the
initialization of a multi-wavelet transform associated with the
Hermite cubic spline multi-resolution {9]. The two chosen
(r =2) scaling functions are shown in Figures 2 and 3. These
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Figure 2: (p] (x) of the Hermite cubic spline muiti-resolution.
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Figure 1: System diagram of orthogonal projection initialization.
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Figure 3: (|)2 (x) of the Hermite cubic spline multi-resolution.

functions have the property that if
F(x)= X co(k)o' (x k) + 5 ()9’ (x — k),
ke2

and

x=k

then the coefficients are given by cj(k)=f(x)
k)= ()],

4.1 Interpolation Approach

For the Hermite cubic spline multi-scaling function, an
interpolating set of functions does not exist. In other words, the
convolutional inverse of matrix B(k) (c.f., eq. (2)) does not
exist. The singularity can be easily shown by computing the
Fourier transform of the filter

L0 (00
B(")z[(l/z,l/z) (—1/8,1/8)]’

which is given by the matrix

A 1 0

B(f)= [(1/2)(1 re) (8)(e " - 1)]'
For (B)™'(k) to exist, the matrix B(f) must be nonsingular for
S €[0,1], which is not true since B(0) is singular.
4.2 Orthogonal Projection Approach
If the signal is known exactly, or if we have samples of the
signal and it is known to be contained in some space for which
an interpolating basis does exist, then we can always apply our
projection initialization. If we are operating with samples of the
signal, then the space that we use 10 interpolate f(x) can, but
need not be within V. If the signal is within V,, then the
approximation will be exact since we are performing a projection

operation.

Example 1: Input signal not in V,
As an example let us assume that our signal is contained within
the space S(B,,) defined by a 1/2 scaled cubic B-spline
function. That is

flx)= ge(k)mx ~ k).
The coefficients e(k) are easily computed from the samples
f(k/2) by use of the inverse filter (ﬁm)_'(k)[7]. Note that
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since f(x) is not guaranteed to have C” smoothness at the
points x = (2k +1)/2, the space 5(B,,,) is not contained in the
Hermite cubic spline space V,,. The signal shown in Figure 4 is
contained in S(B,,z) but not V,. Figure 7 displays the
orthogonal projection of this signal into the space V,. The
coefficients c;{k) and ci(k) shown in Figures 5 and 6 are the
sample values of the projection and the sample values of the

projection'’s derivative respectively.
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Figure 5: Computed C(') (k ) coefficients for the signal in Fig. 4.
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Figure 6: Computed (:3 (k) coefficients for the signal in Fig. 4.
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Figure 7: Orthogonal projection of the signal in Fig. 4 into V.

Example 2: Input signal in V,
For this example we use a function in the cubic B-spline space
with integer knots, S(B). The signal has the form

f(x) =Y e(k)B(x~k).

keZ

It is not difficult to show that S(B) = V,. Filtering this signal
through the system in Figure 1 provides the coefficients
displayed in Figures 9 and 10. Since the signal is already in the
space V,, our projection approach provides coefficients that are
exactly the sample values of the signal and its derivative. For
this example, the direct interpolation approach [1] cannot obtain
co(k) and cZ(k) even though the signal is in V,. The reason is
that the matrix-sequence (B)™'(k) does not exist as mentioned at
the beginning of this section.

14 16 18 20 22 24

Figure 8: A signal contained in S(B) and V.
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Figure 9: Computed C(l] (k) coefficients for the signal in Fig. 8.
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Figure {0: Computed Cg (k) coefficients for the signal in Fig. 8.

5. CONCLUSION

We have introduced a new method for initializing (pre-filtering)
the multi-wavelet decomposition algorithm. The approach has
the following attractive features:

* The projection filter will always exist unlike the interpolation

filter.

e If the signal is contained within the space defined by the
multi-scaling function, then the projection solution will be an
exact approximation of the signal.

¢ The method is more flexible and general than previous
methods since it provides a least squares solution when the
original signal is not contained in the space defined by the

multi-scaling function.
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