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Abstract
The mathematical formulation of calibrating color

scanners is presented. The mapping from scanned val-
ues to colorimetric values is inherently nonlinear. Cal-
ibration required approximating this nonlinear map-
ping. Neural networks are particularly suited to this
task. Performance using an artificial neural network
generated LUT is compared to that achieved by other
commonly used methods.

1 Introduction
The proliferation of desktop color scanners and

printers has led to an interest in achieving colorimetric
accuracy with these devices. A recent special issue of
IEEE transactions on image processing was dedicated
to the problems of color recording and reproduction
[1]. Conveying accurate colorimetric information is of
importance to a varied number of applications includ-
ing product marketing, textile production, the retail
catalog industry, and remote sensing to name a few.

In order to reproduce consistent and accurate color
with a scanner or printer, a mapping is needed from
the device control values to a space that has a one-
to-one mapping onto the CIE XYZ color space. This
requirement leads to the definitions of device indepen-
dent and device dependent color spaces.

A device independent color space is defined as any
space that has a one-to-one mapping onto the CIE
XYZ color space. Device independent values describe
color for the standard CIE observer.

By definition, a device dependent color space cannot
have a one-to-one mapping onto the CIE XYZ color
space. In the case of a recording device, the device
dependent values describe the response of that partic-
ular device to color. For a reproduction device, the
device dependent values describe only those colors the
device can produce.

Scanner calibration is achieved by determining a
mapping (if one exists) which maps the device de-
pendent control values to a device independent color

space (e.g. CIELAB). These mappings are nonlinear
because of the linear characteristics of the actual hard-
ware and, more importantly, because of the nonlinear
transformation to the CIELAB space which models
the sensitivity of the eye to color differences. It is
noted that calibrating printers is even more nonlin-
ear in practice. Typically, these mappings are imple-
mented via a multi-dimensional look-up-table (LUT)
in combination with some low order interpolation.
The International Color Commission (ICC) has sug-
gested a standard format for the mappings[8].

The neural network is inherently nonlinear when
designed with nonlinear neural activation functions.
The neural net approach has additional advantages
in that it automatically achieves a certain degree of
smoothness and does not require special programming
on the part of the designer. Here we demonstrate an
example of calibrating a color scanner with a neural
net generated LUT. The neural net approach is com-
pared to standard methods including global linear and
polynomial mappings, and a locally linear approxima-
tion method.

2 Color Scanner Calibration
Mathematically, the recording process of a scanner

can be expressed as

ci = H(MT ri)

where the matrix M contains the spectral sensitiv-
ity (including the scanner illuminant) of the three
(or more) bands of the scanner, ri is the spectral re-
flectance at spatial point i, H models any nonlineari-
ties in the scanner (invertible in the range of interest),
and ci is the vector of recorded values.

We define colorimetric scanning as the process of
scanning or recording an image such that the CIE val-
ues of the image can be recovered from the recorded
data. This means that image reflectances which ap-
pear different to a standard observer will be recorded
as different device dependent values. Mathematically,



    

this implies

ATLrk 6= ATLrj ⇒ MT rk 6= MT rj

for all rk, rj ∈ Ωr k 6= j where Ωr is the set of physi-
cally realizable reflectance spectra, the columns of ma-
trix A contain the CIE XYZ color matching functions,
and the diagonal matrix L represents the viewing il-
lumination. In other words, a colorimetric scanner
would “see” the image just as a standard observer un-
der illuminant L.

Given such a scanner, the calibration problem is to
determine the continuous mapping Fscan which will
transform the recorded values to a CIE color space. In
other words, determine the function Fscan such that

t = ATLr = Fscan(c)

for all r ∈ Ωr.
Unfortunately, most scanners and especially desk-

top scanners are not colorimetric, hence the transfor-
mation Fscan does not exist. This is caused by phys-
ical limitations on the scanner illuminants and filters
which prevent them from being within a linear trans-
formation of the CIE color matching functions. Work
related to designing optimal approximations is found
in [9, 10, 11, 12].

For the non-colorimetric scanner, there will exist
spectral reflectances which look different to the stan-
dard human observer but when scanned produce the
same recorded values. These colors are defined as be-
ing metameric to the scanner. Likewise, there will
exist spectral reflectances which give different scan
values and look the same to the standard human ob-
server. While the latter can be corrected by the trans-
formation Fscan, the former cannot.

On the upside, there will always (except for de-
generate cases) exist a set of reflectance spectra over
which a transformation from scan values to CIE XYZ
values will exist.

Printed images, photographs, etc. are all produced
with a limited set of colorants. Reflectance spectra
from such processes have been well modeled with very
few (3-5) principal component vectors [2, 3, 4, 5].
When limited to such data sets it may be possible
to determine a transformation Fscan such that

t = ATLr = Fscan(c)

for all r ∈ Bscan where Bscan is the subset of re-
flectance spectra to be scanned.

Look-up-tables, nonlinear and linear models for
Fscan have been used to calibrate color scanners
[6, 7, 13, 14]. In all of these approaches, the first

step is to select a collection of color patches which
span the colors of interest. Since the particular sam-
ples selected determine the characteristics of the map-
ping, the scanner calibration is usually identified with
respect to the process which produced the samples.
Ideally these colors should not be metameric in terms
of the scanner sensitivities or to the standard observer
under the illuminant for which the calibration is be-
ing produced. This constraint assures a one-to-one
mapping between the scan values and the device inde-
pendent values across these samples. In practice, this
constraint is easily obtained. The reflectance spectra
of these Mq color patches will be denoted by {q}k for
1 ≤ k ≤Mq .

These patches are measured using a spectropho-
tometer or a colorimeter which will provide the device
independent values

{tk = ATqk} for 1 ≤ k ≤Mq.

Without loss of generality, {tk} could replaced with
any colorimetric or device independent values, e.g.
CIELAB, CIELUV. The patches are also measured
with the scanner to be calibrated providing {ck =
H(MTqk)} for 1 ≤ k ≤Mq.

Mathematically, the calibration problem is: find a
transformation Fscan where

Fscan = arg(min
F

Mq∑
i=1

||F(ci)− L(ti)||2)

where L(·) is the transformation from CIEXYZ to the
appropriate color space and ||.||2 is the error metric in
the color space.

3 Artificial Neural Net
Because of its embedded nonlinearities, an artificial

neural network (ANN) is well suited for the generation
of the 3-D LUT in a scanner calibration problem. the
mathematical description of the input-output relation
for a single hidden layer neural network is given by
[15]

L(t) = W1Φ(W0c)

where Φ(u) = [φ1(u1), ..., φN (uN )]T , u = W0c, φi(·)
represents the neural activation function for the ith
hidden neuron, and the bias in the neuron is accounted
for by augmenting the vector c. The weights for the
input layer are denoted by the superscript 0 and the
output layer weights are denoted by the superscript
1. The user selects the number of neurons, N , in the
hidden layer and the form of the activation function.
Typically, the activation function is the same at each



      

hidden neuron. The activation function can be con-
sidered in some respects as a basis set in which to
represent the function Fscan.

The training of the network is a process of esti-
mating the optimum weight matrices W = [W0,W1]
which minimized the error on a given data set. In
this case, the vector pairs {ci,L(ti)}represent the in-
put and output respectively. It is important to test
the performance of the neural net after training. This
is done by dividing the data into a training set and a
testing set. Usually half the data is used to train the
network and minimize the error, then the error of the
trained network is computed using the testing set. If
the errors are of the same order, the user has confi-
dence that the network has not over-fit the training
data and will generalize in a robust manner.

Once the network has been trained, the 3-D LUT
is generated by evaluating the neural net at the RGB
LUT grid points. These points may contain some
data samples but since the number of samples is much
smaller than the number of grid points, the perfor-
mance of the LUT depends on the generalizing abil-
ity of the mapping obtained from the neural network.
To achieve acceptable performance, the LUT must be
relatively smooth. The smoothness of the activation
function and the number of hidden neurons can as-
sure smoothness to a degree determined by the user.
The use of an appropriate basis function in the ANN
will insure this requirement. The usual sigmoid func-
tion was used in this work but it may be of interest to
investigate other functional forms.

Additionally, it must be possible to determine val-
ues for grid points in the table which may be outside
the range of the scanned target data (i.e. the range of
the scanned values ci does not cover the entire space
of possible scanned values). The neural net can eas-
ily be used to extrapolate values for the grid points
that are beyond the range of the scanned target val-
ues. This is another advantage of the neural net ap-
proach. The extrapolation problem is a significant one
for methods which reply on nearest neighbor interpola-
tion/extrapolation. Even minor noise can cause large
errors for these methods.

4 Example
A color target with 264 samples was measured with

a three band (RGB) desktop color scanner. The
CIELAB value for each sample was measured for D50
illumination. LUTs of size 32x32x32 which map from
the RGB output values to the CIELAB values were
generated using four different methods. Linear inter-
polation was used to determine the values lying off the
grid. It is noted that most sample points do not lie on

the grid.
In the first method, a global linear fit was ob-

tained between the RGB values and the CIE XYZ
values. The fit mapped to CIEXYZ, but minimized
the CIELAB ∆E error. Mathematically, this map-
ping can be described as

Nscan = arg(min
N

264∑
i=1

||L(Nvi)− L(ti)||2)

where vi = H−1(ci). The operation H−1 simply lin-
earizes the input data to the fitting function. A nonlin-
earity still exists in the data due to the transformation
to CIELAB.

In the second method, a global nonlinear fit was
obtained which incorporated cross-polynomial terms
of the scanned RGB data. Again, the fit mapped to
CIEXYZ but minimized the CIELAB ∆E error and
can be mathematically expressed as

Pscan = arg(min
P

264∑
i=1

||L(Pzi)− L(ti)||2)

where zi = [R,G,B,RG,RB,GB]T , vi = [R,G,B]T

and RG, RB, GB denote the products of the R, G,
and B components.

In the third method, the N closest scanned values
to the grid point were used to compute a locally linear
fit for that region of RGB space. Mathematically, this
mapping can be expressed as

Qscan(u) = arg(min
Q

JN∑
i=J1

||L(Qvi)− L(ti)||2)

where ||u − vi|| ≤ ||u − vk|| for all pairs {i, j} where
i ∈ {J1, ..., JN} and k 6∈ {J1, ..., JN} (i.e. the indices
{J1, ..., JN} are the N points in {vi}264

i=1 which are clos-
est to the point u in terms of Euclidean distance). For
this example, N=20 was used.

Finally, for the fourth method, an artificial neu-
ral network (ANN) was trained on the 264 samples.
A fully connected network with one hidden level was
used. The activation function in the hidden level was
the sigmoid function. The number of nodes in the hid-
den level was varied from 5 to 25. The cost function
for determining the optimal weights in the network
can be expressed as

Wscan = arg(min
W

264∑
i=1

||RW(vi)− L(ti)||2)

where the trained network is represented by RWscan .
A Levenberg-Marquardt algorithm was used in opti-
mizing the network weights via back-propagation.



   

Method Average ∆E Max ∆E
Global Linear 4.89 20.70
Global Polynomial 4.08 17.40
Locally Linear 2.80 23.0

Table 1: ∆E results for nonneural methods

Num. Hidden Neurons Average ∆E Max ∆E
5 5.96 22.18
10 2.87 13.30
15 2.44 11.59
20 2.20 12.09
25 2.26 10.64

Table 2: ∆E results using ANN

For each method, a 3-D LUT was generated by eval-
uating the function on the 32x32x32 grid points. The
scanned data was then fed into the LUT and the LUT
output compared to the known LAB values for those
264 samples. Linear interpolation was performed in
the LUT. The results are given in Tables 1 and 2.
From these results it is clear that global linear and
polynomial methods do not perform as well as the
locally linear method or the ANN, and in fact the
ANN provides the best results. Further investigation
is needed to look into how well each of these transfor-
mations generalize.

5 Conclusions
The problem of calibrating color scanners was de-

fined mathematically. Various methods were com-
pared in creating the calibration. From these pre-
liminary results it appears that a neural net approach
shows promise for use in generating the 3-D LUT used
in processing scanned data.

References
[1] H. J. Trussell, J. Allebach, M. D. Fairchild, B.

Funt, and P. W. Wong Eds., Special Issue on
Color Imaging, IEEE Transactions on Image Pro-
cessing, Vol. 6, No. 7, July 1997.

[2] B. A. Wandell, “The Synthesis and Analysis of
Color Images,” IEEE Trans. on Pattern Anal.
and Machine Intell., vol. 9, no. 1, pp. 2-13, Jan.
1987.

[3] J. B. Cohen, “Dependency of the spectral re-
flectance curves of the munsell color chips,” Psy-
chronomic Sci., vol. 1, pp. 369-370, 1964.

[4] J. Ho, B. Funt, and M. S. Drew, “Separating
a color signal into illumination and surface re-
flectance components: theory and applications,”

IEEE Trans. on Pattern Anal. and Machine In-
tell., vol. 12, pp. 966-977, Oct. 1990.

[5] M. J. Vrhel, R. Gershon, and L. S. Iwan, “Mea-
surement and analysis of object reflectance spec-
tra,” Color Res. Appl., vol. 19, pp. 4-9, Feb. 1994.

[6] P. C. Hung, “Colorimetric calibration in elec-
tronic imaging devices using a look-up table
model and interpolations,” J. Electronic Imaging,
Vol. 2, pp. 53-61, Jan. 1993.

[7] H. R Kang and P. G. Anderson, “Neural network
applications to the color scanner and printer cali-
brations,” J. Electronic Imaging, Vol. 1, pp. 125-
134, April 1992.

[8] International Color Consortium, Int. Color Con-
sort. Profile Format Ver. 3.4, available at
http://color.org/.

[9] G. Sharma, H. J. Trussell, and M. J. Vrhel,, “Op-
timal Nonnegative Color Scanning Filters,” IEEE
Trans. Image Proc., vol. 7, no. 1, pp. 129-133, Jan
1998.

[10] P. Vora, and H. J. Trussell, “Mathematical Meth-
ods for the Analysis of Color Scanning Filters,”
IEEE Trans. Image Proc., vol. 6, no. 2, pp. 312-
320, Feb. 1997.

[11] M. J. Vrhel, and H. J. Trussell, “Optimal Color
Filters in the Presence of Noise,” IEEE Trans.
Image Proc., vol. 4, no. 6, pp. 814-823, June 1995.

[12] M. Wolski, J. P. Allebach, C. A. Bouman, and E.
Walowit, “Optimization of sensor response func-
tions for colorimetry of reflective and emissive ob-
jects,” IEEE Trans. Image Proc., vol. 5, no. 3, pp.
507-517, March 1996.

[13] H. Haneishi, T. Hirao, A. Shimazu, and
Y. Mikaye, “Colorimetric precision in scan-
ner calibration using matrices,” in Proc. Third
IS&T/SID Color Imaging Conference: Color Sci-
ence, Systems and Applications, Nov. 1995, pp.
106-108.

[14] H. R. Kang, “Color Scanner Calibration,” J.
Imaging Sci. Technol., Vol. 36, pp. 162-170,
Mar./Apr. 1992.

[15] S. Haykin, Neural Networks, MacMillan, New
York, 1994.


