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ABSTRACT

MLUTs used in color characterization require significant
memory for embedded systems. Most tools that create de-
vice characterization maps, use MLUTs. For this reason,
there is interest in approximating MLUT color characteri-
zation mappings with more compressed function approxi-
mation methods. In this document, artificial neural network
approximations for MLUTs are investigated. Color accu-
racy, computational loads, and memory requirements are
discussed.

1. INTRODUCTION

Multidimensional look-up-tables (MLUTs) are commonly
used for the approximation of the mapping between device
dependent color values and device independent color values
[1]. MLUTs are also used for mappings between device
dependent values for different devices, such as the mapping
from a scanner’s RGB values to a printer’s CMY or CMYK
values, or a digital camera’s RGB values to a standard RGB
space such as sRGB.

MLUTs have the advantage of being very flexible and
relatively easy to adjust. Often, in the creation of an MLUT,
the table entries are adjusted to create effects such as satu-
rated colors, or to implement specific gamut mapping meth-
ods. A disadvantage of MLUTs is that they can be large for
embedded systems with limited memory.

Artificial neural networks (ANNs) provide a more com-
pressed form of function approximation compared to MLUTs.
By approximating the MLUT mapping instead of using the
original data to create an ANN, it is possible to use the ex-
isting MLUT adjusting and optimizing tools to obtain the
mapping that provides the ideal visual effect. The ANN is
then used to approximate this ideal MLUT mapping.

2. MLUT COLOR MAPPINGS

Let the true ideal color mapping between theM dimen-
sional color spaceC and theN dimensional color spaceD

be given by the mappingF where by definition

F(c) ∈ D (1)

for c ∈ C.
For simplicity (and to consider only cases of interest) let

us assume that the elements of the vectors inC range from 0
to P . In addition, we will assume thatM = 3. In this case,
the entries for a uniform sampled MLUT of sizeN ∗ R3,
which approximates the mappingF are defined by

F(ci,j,k) = di,j,k i, j, k ∈ [0, ..., R− 1] (2)

where

ci,j,k =
[

P ∗ i

R− 1
,

P ∗ j

R− 1
,

P ∗ k

R− 1

]T

(3)

The approximation of a valueF(c) = d, which is not on a
sample point on the grid (i.e.d 6= di,j,k is calculated by an
interpolation method. Two common MLUT interpolation
methods are trilinear interpolation and tetrahedral interpo-
lation [2].

Tetrahedral interpolation reduces the number of points
used in the interpolation calculation by dividing the cube
containing the valuec into subsections. An additional test
consisting of three compares is required to determine what
subsection contains the vectorc. Each subsection uses only
4 points to compute an interpolation as opposed to the 8
points used in the trilinear interpolation.

3. ANN COLOR SPACE MAPPING

Similar to MLUTs, feed-forward ANNs are a general method
for approximating nonlinear mappings. The difference be-
tween the two methods is that the ANN generally requires
significantly less memory than an MLUT to approximate a
given nonlinearity. The cost of this memory reduction is
computational complexity.

ANNs have been used to implement color mappings [3].
However, they have not been commonly used to approxi-
mate color mappings already defined by MLUTs. The ad-
vantages of this approach have already been mentioned.
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The architecture of the ANN should ideally be designed
based upona priori knowledge of the function that the net-
work is to approximate. It can be shown that a 2-layer feed
forward network with a sigmoidal nonlinearity can be used
to approximate any function with a finite number of dis-
continuities, arbitrarily well, given sufficient neurons in the
hidden layer [4]. For this reason, we will concentrate on this
architecture.

Note that the mapping defined by the MLUT from the
three dimensional spaceC to theN dimensional spaceD
can be defined byN vector valued mappings. It is each of
these mappings that we wish to approximate with an ANN.

The input-output relationship of our 2-layer feed-forward
ANN with S neurons in layer 1 is expressed as

L(c) = vT Φ(Wc + b) + e (4)

whereΦ(x) = [φ(x1), ..., φ(xS)]T , b is anS element vec-
tor, W is anSx3 matrix, v is anS element vector,e is a
scalar, andφ is the sigmoidal function, which is given by

φ(x) =
2

1 + exp(−2 ∗ x)
− 1 (5)

The coefficientsv, b, W, ande are optimized through an
iterative back-propagation method. The initial conditions
of this method can have a significant affect on the value to
which it converges.

The determination of the number of coefficients required
to achieve a given level of approximation error depends on
the smoothness of the actual function. In practice, some
experimentation and inspection of the values after conver-
gence is necessary to optimize the parameterS.

4. MEMORY REQUIREMENTS

Assuming an 8 bit/channel representation for color data,
The memory requirements for computing CMYK color val-
ues from scanner RGB values with an MLUT of sizeRxRxR
is given by

SIZEMLUT (R) = 4 ∗R3 BYTES (6)

This is true regardless of the interpolation method.
Assuming the data is well-scaled, the ANN coefficients

can be well represented by 16 bit words. Also, the sigmoid
function can be well approximated by a 256 element 1-D
LUT of 16 bit words. The memory requirements for the
ANN to compute CMYK color values is given by

SIZEANN (S) = 512+4∗(S ∗3+S+S+1)∗2 BYTES
(7)

Note that for both approaches, it would be possible to com-
pute each color plane separately, which would reduce mem-
ory requirements at the cost of more traffic and computa-
tions.

5. COMPUTATIONAL REQUIREMENTS

Assuming an embedded system with a 16 bit word length,
the computational requirements for mapping from RGB to
CMYK were calculated for the MLUT with trilinear inter-
polation, the MLUT with tetrahedral interpolation and the
four ANNs each withS neurons. In this case, no particular
optimizations were made in terms of what operations could
be performed in parallel. Rather, each addition, multiply,
bit-wise shift, look-up, bit-wise AND, compare, and switch
were calculated. The results are given in Table 1. Note that
the MLUT computation is independent of the table size.

Table 1. Computational requirements for methods
Operation Trilinear Tetrahedral ANN

Look-up 32 28 24 ∗ S
Bit-wise shift 12 13 16 ∗ S + S

Addition 41 36 20 ∗ S
Multiply 47 14 4 ∗ S

Bit-wise AND 3 3 0
Compare 0 3 0
Switch 0 1 0
Total 135 98 65 ∗ S

6. EXAMPLE

To investigate the feasibility of approximating a real color
MLUT, we approximated the MLUT that maps the RGB
values from a Brother scanner to CMY values for a Lexmark
ink-jet printer. The MLUT was of sizeR = 17. An ANN
was trained for each of the three color channels. Networks
of several sizes were created. The networks were optimized
using the Levenberg-Marquardt algorithm. Five different
initial conditions were tried in the training process for each
color channel and the convergence that achieved the small-
est error was selected. Once the network was computed,
several different inputs were applied to the MLUT with tri-
linear interpolation and to the network to assess its accu-
racy. All 173 grid point vector values were used in training
the networks.

6.1. Gray Scale

To assess the accuracy of the fit along the gray scale axis,
the values

[i, i, i]T i = 0, 1, 2, ..., 255

were provided as an input to the ANNs and to the MLUT.
The CMY output for the MLUT and the ANN are shown in
Figures 1-3 forS = 16.
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Fig. 1. Cyan output, MLUT and ANN for input[i, i, i]T

i = 0, 1, ..., 255
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Fig. 2. Magenta output, MLUT and ANN for input[i, i, i]T

i = 0, 1, ..., 255
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Fig. 3. Yellow output, MLUT and ANN for input[i, i, i]T

i = 0, 1, ..., 255

There are differences visible in the plots between the
two outputs. One slightly surprising result is the lack of
smoothness in the MLUT output, in particular the yellow
channel has significant variations, which the ANN smooths.

6.2. Extreme color edges

The RGB spectrum image shown in Figure 4 was applied as
input to the MLUT and the ANNs. The spectrum image has
the property that at every pixel at least one element of the
RGB vector is 0 or 255. This implies that the image consists
completely of values that are at the edges of the range of the
color spaceC. This is a useful image to assess the match
between the two mappings at the extreme edges of the color
space. Figure 5 is the output of the MLUT with trilinear
interpolation and Figure 6 is the output of the ANNs with
S = 16. Note that a real scanner may not even create values
at many of these points.

6.3. Color Accuracy

To quantify the color errors introduced by the approxima-
tion, a grid of 7x7x7 RGB values were fed through each of
the networks and the MLUT. The CMY output values were
printed and the CIELab values for each color were mea-
sured with a Gretag spectrophotometer. The∆E94 differ-
ence between the MLUT values and the ANN values were
computed. Statistics of the∆E94 differences are contained
in Table 2.

Multiple prints were created of the MLUT chart and
measured with the spectrophotometer to obtain a baseline
variability. Figure 7 displays a plot of the average∆E94
values and the process variability.
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Fig. 4. RGB spectrum input image
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Fig. 5. MLUT output for spectrum input
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Fig. 6. Neural net output for spectrum input

Table 2. ∆E94 difference between MLUT and ANNs
Network Size Avg. ∆E %∆E > 3.0

5 2.7 33.8%
10 1.9 14.0%
15 1.7 7.0%
20 1.6 5.8%
30 1.5 5.5%
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Fig. 7. Average∆E94 error versus number of neurons

As expected, an increase in the number of neurons de-
creases the color error. Color errors larger than 3 will be
clearly visible, and error less than 1 will not be visible to
the standard human observer. The error levels achieved, in-
dicate that in restrictive memory applications with signifi-
cant computational resources, the ANN approximation may
be a useful approach.
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