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ABSTRACT

We introduce a projection based multi-channel restoration

method which is useful in cases for which there is no a priori

information about the input signal.  The method is especially

helpful in situations where a large number of specimens are later

combined to achieve additional noise reduction.  We describe the

approach and discuss the problem of restoring electron

micrographs.  The method does require knowledge of the

impulse response of the degradation.  For this reason, the

sensitivity of the approach to uncertainty in this degradation is

investigated through simulation.

1. INTRODUCTION

In electron microscopy, there exists a trade off between image

contrast and the amount the image is in focus.  As the image is

brought into focus, its contrast decreases.  For this reason, high

resolution electron micrographs are recorded with a significant

amount of defocus. This results in a degradation that includes

the complete loss of information at certain spatial frequencies.

Because these spatial frequencies are a function of the defocus,

it is advisable to record multiple images at varying degrees of

defocus [12].  These images can then be combined using a

multi-channel restoration method to obtain a single restored

micrograph.

To keep from damaging the specimen, high resolution

electron micrographs of biological macro-molecules are recorded

at low electron doses.  The use of a low electron dose produces

an image with a low SNR, typically on the order of 0dB.  In

practice, the noise is reduced in a post-processing phase, in

which a large number of images of identical specimens are

combined.  The specimens may be combined by correlation

averaging [3], or by a 3-D reconstruction algorithm [2].

Since there exists the possibility for additional noise

reduction, the restoration method should not distort the signal.

Statistical based multi-channel deconvolution approaches such

as Wiener filtering, or  Bayesian methods require a priori

information about the input signal which may be difficult to

obtain in practice [4,5,6,7,17].  Without the correct signal

statistics the signal estimate can be distorted [13]. This distortion

is not acceptable for applications in which additional noise

reduction is achieved by combining a large number of images.

An approach to the multi-channel deconvolution problem

is proposed, which requires no a priori information about the

input signal.  The method is a multi-channel extension of the

generalized sampling problem discussed in [14] and includes as

a special case a current processing technique in electron

microscopy [16].  The approach incorporates knowledge of the

final reconstruction method which can include splines, wavelets,

or display devices. In addition, unlike most classical

formulations, the input signal is not required to be band-limited;

it can be an arbitrary finite energy function.  The method

enforces a system projection constraint which produces less

smoothing of the signal than the statistical based techniques, at

the expense of less noise reduction. The projection constraint

insures no loss of signal information if the input signal is

included in the reconstruction space (e.g. the class of

bandlimited functions).   The residual in such a case will consist

of only noise.  The approach should be especially useful for

those applications in which avoiding signal distortion is more

important than noise reduction, or for those cases in which no a

priori information is available.

2. PROJECTION BASED MULTI-CHANNEL

RESTORATION

Mathematically, the recording process for an N-channel system

can be represented by
r k j x k y j s x y n k j i Ni i i( , ) ( , ), ( , ) ( , ) ,.....= − − + =ϕ 1

where r k ji ( , ) is the recorded data for channel i , n k ji ( , ) is

additive noise, s x y( , ) is the continuous input, and ϕ i x y( , )− −  is

the impulse response in the i th channel.  Figure 1 contains a

diagram of a two channel system, where qi (k, j )  are digital



filters to be designed, and ϕo x y( , )  defines the output signal

subspace
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The problem is to design the filters q k j i Ni ( , ) ,.....= 1 ,

using no a priori signal information, such that the signal is not

distorted.  With these requirements, designing the system to act

as a projector becomes desirable.   Specifically, if the system is

a projection operator, then given that the input s x y( , ) satisfies

s x y Vo( , ) ∈  the output ƒ( , )s x y  will be a perfect reconstruction of

the input signal.  If the input s x y( , ) is not contained in Vo, then

the best solution, in the least squares sense, is the orthogonal

projection of s x y( , ) onto Vo.  Since s x y( , ) is not directly

available (nor is any a priori information about the signal), the

least squares solution is difficult to obtain when s x y Vo( , ) ∉ .  In

this case, the system provides, as an estimate, the projection of

s x y( , ) onto Vo orthogonal to a subspace defined by the input

impulse responses.

It can be shown that the filters
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give rise to all projection solutions, where Q u vi ( , ) is the Fourier

transform of q j ki ( , ) and
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i
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is the spectral input-output correlation function with Φi u v( , ) the

Fourier transform of ϕ i x y( , ), and Φ   the complex conjugation

of Φ .  The coefficients W u vi ( , ) in the above filters are

weighting terms that provide degrees of freedom in the filter

design while enforcing the overall system projection constraint.

If ϕo x y x y( , ) ( ) ( )= sinc sinc  (separable sinc), then the above

equation reduces to a common restoration approach in

microscopy [16].

The subspace to which the projection is orthogonal is
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can be considered the overall input impulse response of the
system.

Ideally, the weights W u vi ( , ) should be selected to reduce

the noise at the system output.  The power spectrum of the noise

after the summation of the output of the restoration filters is

(assuming independent noise between the channels)
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where P u vni
,( ) is the noise power spectrum introduced in

channel i .  The goal is to select the weights such that P u vN ,( )  is

minimized at each frequency.  From the form of (1) is clear that

if W u vi ( , ) i N= 1,...,  was the optimal solution, then αW u vi ,( )
would also be optimal.  Therefore, the problem of minimizing

P u vN ,( )  can be approached as minimize
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with respect to W u vi ( , ) i N= 1,...,  subject to the constraint
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where κ  is a positive constant.  Minimization leads to the

optimal weights W u v
P u vi

ni
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3. ELECTRON MICROSCOPY BACKGROUND

For the electron microscopy application, the noise free Fourier

transform of the recorded values is given by ( cf. [12] )

R u v H u v F u v u v u v S u vi i( , ) ( , ) ( , ) , sin ( , ) ( , )= ( ) + [ ]( )δ γ

where S u v( , ) is the Fourier transform of the input signal and

H u v F u v u v u vi( , ) ( , ) , sin ( , )δ γ( ) + [ ]( )  is the frequency response

of channel i , which is to be estimated; here amplitude contrast

effects have been ignored.  The F u v( , ) term is produced by the

finite aperture size of the microscope. H u v( , ) is a low pass

function which is produced by source coherence effects.  The

exact shape of H u v( , ) is difficult to determine and

compensation is usually not made for its effect. A significant

degradation that is corrected for is sin ( , )γ i u v[ ].  This portion of

the microscope response produces phase reversals and

frequency nulls.  For the i th channel γ i u v( , ) is
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where λ  is the operating wavelength of the microscope, Cs is

the spherical aberration of the objective lens, and ∆fi  is the focal

setting of the microscope for the i th channel.  The quantity λ  is

determined by the voltage setting of the microscope and is

known a priori. The spherical aberration is known a priori and

is often provided by the microscope manufacturer.  To estimate
the shape of sin ( , )γ i u v[ ] i N= 1,.....   it is necessary to determine

the parameters ∆fi  for i N= 1,.....  from the recorded data.

The first step in estimating the ∆fi  is computing an

estimate of the power spectrum of the recorded data which is

denoted by R u vi ( , )
2
.  Since the term sin ( , )γ i u v[ ] is radially

symmetric, the power spectrum estimate is radially averaged.

Minima of the radially averaged function R fi ( )
2
 will occur near

the zero crossings of the function sin ( , )γ i v0[ ].  The position of



the minima can be estimated using a wavelet based method, or

by visual inspection of the diffraction pattern.  Due to the

extreme noise and the effects of H u v( , ), it is possible that only

one or two minima are distinguishable.  Once the null locations
are estimated, an estimate of ∆fi  is calculated using

min ( , )
∆f i

i kk

M
f kγ π0

2
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−( )=∑

where M  and fk  are respectively the number of detectable

extrema and their positions in the radial average.  Cepstral based

approaches are not useful for estimating the defocus, since the

nulls of sin ( , )γ i u v[ ] are not equally spaced [1,10].

4. PRACTICAL ISSUES

If there is an area of the frequency spectrum for which no signal

information is obtained, then the projection based approach can

over amplify the noise.  To avoid boosting the noise, a clipping

operation may be performed on the restoration filters prior to

their use.  Mathematically this operation can be represented by

Qti
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δ ej ∠Q(u,v)( )

Qi (u,v)



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Qi (u,v) > δ
else

where the parameter δ  is determined by the level of noise.  This

is similar to the regularization of inverse filters as described in

[9].  Interestingly, for the single channel case ( N = 1) the filter

Q u vt1
,( ) with δ = 1.0 is a commonly used restoration method in

electron microscopy (assuming the only degradation being

corrected is sin ( , )γ i u v[ ]).  This filter amounts to simply

correcting the phase reversals which occur from the degradation

sin ( , )γ1 u v[ ].

The restoration method described required knowing the

exact frequency response of the channel degradations.  The

degradations must be estimated from the recorded data.  In the

case of electron microscopy, the noise is such that there may be

significant uncertainty in the estimate of the defocus parameters

which define the channel responses.  Therefore, we will look at

the sensitivity of the restoration method to errors in this

parameter.

5. SIMULATIONS

Sensitivity of restoration methods to uncertainty in blur

estimates have been previously investigated but primarily for the

single channel case and for camera blurs [11].  Here we perform

a two channel simulation in which a test image shown in Fig. 3a

is degraded by the terms δ γu v u vi, sin ( , )( ) + [ ] with

λ = 3 69274. pm,  Cs = 2  mm,  ∆f1 1225= nm,  and

∆f2 249= nm.  The radial profile of each channel frequency

response is shown in Fig. 2.  Estimates of the channel

responses were computed from the location of the first zero. To

simulate the uncertainty in this position, a series of restorations

were performed in which the zero location was incorrectly

estimated by up to 15 pixels in the frequency domain.  A

sampling rate of 4nm/pixel was simulated with 256x256 images.

Noise was added to produce a signal to noise ratio of 0dB in

each channel.  The restored images were then ensemble

averaged over 10 realizations to simulate the noise reduction

achieved by combining multiple specimens.  Degraded noisy

images are shown in Fig. 3c-d.  The frequency radial profiles of

the restoration filters with optimum weights Wi (u,v) = 1.0 are

shown in Fig. 2 when the correct zero locations were used.

ϕo x y( , ) was the separable sinc (bandlimited reconstruction).

The restoration using the filters in Fig 2 is shown in Fig. 3b.

The mean square error was computed for each restoration and is

shown in Table 1.  The values shown were averaged over 10

simulations.  A noise free case was also computed and is

displayed in Table 2.  As the level of noise increases, the

sensitivity to errors in the estimated channel responses

decreases.  This is similar to the result described in [11].  Errors

in estimating channel 1 produced larger errors than those in

channel 2.  From Figs. (2-3) it is clear that channel 2 provided

high frequency information about the signal while channel 1

provided low frequency information.  Since the input signal had

more power at the lower frequencies  the difference in the

sensitivity to errors in channel 1 and 2 is expected.

6. CONCLUSION

Unlike classical statistical based methods, the projection based

restoration preserves all of the signal information when the

original signal is contained in the reconstruction space.  In such

a case, the residual will consist of noise only.  This makes the

method useful for applications such as electron microscopy in

which noise is reduced in a post-processing stage.  From the

simulations it is clear that the sensitivity of the method to errors

in the estimated channel responses decreases with decreasing

SNR.  Knowledge of this sensitivity will be useful in future

work involving the multi-channel restoration of real microscopy

data.
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Figure 1:  2-channel system.

-15 -10 5 0 5 10 15

-15 1227 770 487 445 700 1168 1868

-10 1228 791 474 434 709 1255 2042

-5 1226 734 473 432 727 1312 2174

0 1233 743 466 446 743 1354 2314

5 1256 769 511 444 752 1401 2406

10 1304 758 471 478 788 1447 2488

15 1321 767 482 449 784 1464 2566
Table 1:  MSE for restorations at 0dB.  The top row (-15,...,15) is the

difference between the actual location of the first zero in the degradation and
its estimate in terms of frequency samples for channel 1.  The first column

(-15,...,15) is the same but for channel 2.
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Figure 2:  Radial average frequency plot of restoration

 filters Q1 and Q2 and the channel degradations
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Figure 3:  (a) Noise free papillomavirus capsid model  (b) Restored image
  (c) 0db output of channel 1  (d) 0dB output of channel 2.

-15 -10 -5 0 5 10 15

-15 1066 539 174 14.38 144 476 1028

-10 1061 544 158 5.71 144 537 1159

-5 1069 512 155 1.28 154 578 1270

0 1077 516 150 0.00 160 609 1372

5 1098 532 164 1.52 168 641 1451

10 1123 534 153 8.35 180 670 1518

15 1154 543 160 7.46 190 689 1578
Table 1:  MSE for noise free restorations.  The top row (-15,...,15) is the

difference between the actual location of the first zero in the degradation and
its estimate in terms of frequency samples for channel 1.  The first column

(-15,...,15) is the same but for channel 2.


