IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

1319

Indexing of Multidimensional Lookup
Tables in Embedded Systems

Michael J. Vrhel, Senior Member, IEEE

Abstract—The proliferation of color devices and the desire to
have them accurately communicate color information has led to
a need for embedded systems that perform color conversions. A
common method for performing color space conversions is to char-
acterize the device with a multidimensional lookup table (MLUT).
To reduce cost, many of the embedded systems have limited com-
putational abilities. This leads to a need for the design of efficient
methods for performing MLUT indexing and interpolation. This
paper examines and compares two methods of MLUT indexing
within embedded systems. The comparison is made in terms of col-
orimetric accuracy and computational cost.

I. INTRODUCTION

OLOR imaging and reproduction devices are extremely

common today. To accurately communicate color image
data between these devices, it is necessary to perform transfor-
mations that account for the response of the source device (e.g.,
scanner or digital still camera) and the destination device (e.g.,
LCD, printer, etc). A high level description of these transforma-
tions is contained in [1], [10].

With the proliferation of standard RGB color spaces such
as sRGB [2], many modern devices perform transformations
from (to) sRGB to (from) the device native color space within
an embedded system. Devices such as multifunction periph-
erals (MFPs) contain a scanner, a printer, and a FAX. In this
case, the embedded system must perform a number of different
transformations (e.g., scan-to-print, scan-to-FAX, scan-to-PC,
FAX-to-print, etc.). Such embedded systems are limited in terms
of memory and word width compared to desktop computers. In
many cases, floating point operations are not available.

Multidimensional lookup tables (MLUTs) have been used for
color space transformations for several years [3]-[6], [10]. An
MLUT is included in the international color consortium (ICC)
format for color device characterization [7]. While there is much
literature on these tables and on extensions such as nonuni-
form tables [8], [9], [11, Section 11.3], there has not been pub-
lished information on using these tables within the constraints
of an embedded system. In [11, Section 11.2], Bala briefly dis-
cusses indexing methods but does not look at the errors that
these methods can introduce. To fill that void, we look at the er-
rors that are introduced by various indexing methods in MLUTSs,
and recommend an approach for embedded systems.

Manuscript received August 5, 2003; revised January 30, 2004. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Luca Lucchese.

The author is with ViewAhead Technology, Redmond, WA 98052 USA
(e-mail: michael.vrhel @viewahead.com).

Digital Object Identifier 10.1109/TIP.2004.834658

The paper is organized as follows. Section Il introduces some
notation and reviews the uniform sampling of a color space.
Section III introduces the mathematics for exact determination
of the index and subindex values in the table for floating point
and integer sampling. Section IV discusses and compares two
methods for determining index and subindex values in an em-
bedded system. Section V compares the computational cost of
the two methods. Section VI compares the methods on real
image data and finally Section VII provides a brief summary.

II. MLUT SAMPLE POINTS

Let the true mapping between the M dimensional color space
C and the N dimensional color space D be given by F where

F(c)e D (1)

forc € C.

For simplicity, (and to consider only cases of interest) let us
assume that the elements of the vectors in C range from O to P.
In addition, we will assume that M = 3. In this case, the entries
for a uniform sampled MLUT of size ! R, which approximates
the mapping F are the values

~7:<C'i,j,k) = di,j,k L7J7k S [07...7R— 1] 2)

where

Pxi Pxj Pxk r
R-1"R-1"R-1

Cijk = 3)
T is used to denote the transpose operation and we assume vec-
tors to be in column format. The approximation of a value F(c),
where c is not on a sample point is calculated by an interpola-
tion method. Two common MLUT interpolation methods are
trilinear interpolation and tetrahedral interpolation. For ease of
discussion later, let us define a function H, which takes table
indices as input and provides the table value at that location as
output, which implies
H(i g k) = dijk

1,5,k €0,...,R—1]. “

As an example, consider an MLUT where P = 255 and R =
17. For this sampling step size, the sample values at the grid
points are given by

0, 15.9375, 31.875, 47.8125, 63.75, 79.6875, 95.625
111.5625, 127.5, 143.4375, 159.375, 175.3125
191.25, 207.1875, 223.125, 239.0625, 255.

IThe table will contain N*R? values.

1057-7149/04$20.00 © 2004 IEEE

1320

TABLE 1
TABLE SIZES WITH UNIFORM INTEGER STEP SIZES FOR P = 255

Table Size || Step Size

6 51
16 17
18 15
52 5

In this case, the value of the table at location [i, j, k] = [14, 6, 5]
is denoted by

H(14,6,5) = F([223.12595.625 79.6875]) 5)
which is the device output for an input of [223.125, 95.625,
79.6875]. Note that having float sample points is the defined
method for MLUTs in the ICC profile format [7, pages 51,55]. In
practice, the actual table is often created using rounded values,
which in the above example are given by

0, 16, 32, 48, 64, 80, 96, 112, 128,
143, 159, 175 191, 207, 223, 239, 255.

This rounding introduces a nonuniformly sampled table by one
count in the middle of the table (in the above example, all the
sample values are 16 steps apart except when going from 128 to
143).

Note that there are a few table sizes, for P = 255, which have
uniform integer step sizes. These table sizes are given in Table I.

III. INTERPOLATION

Given an arbitrary value ¢ € C, the problem is to use the
MLUT to approximate the value F(c). The approximation
using trilinear interpolation consists of three steps:

1) determining the cube that contains the point ¢ (which we
will refer to as the cube index);

2) determining the subindexing or weight values within the
cube;

3) computing the interpolation.

A. Finding the Cube Index

Since M = 3, the MLUT consists of (R — 1) cubes. Math-
ematically, the root index of the containing cube can be deter-
mined using

[dh:FLOOR{EE%;:Q}[di<P i=1,2,3

=R-2
[1,J,K]" =d

) = P (©6)

)

where [c]; denotes the ith element of the vector ¢ and [I, J, K]
is used to denote the root index of the cube containing the point
c. Note that the elements of [/, .J, K] are in the range 0 to R— 2.

Given this root index, it is possible to determine the table
values that will be used in the trilinear interpolation. If the root

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

index is given by the values [I,J, K] < R — 1, then the eight
table values that are used in the calculation are given by

{H([I,J,K]),H([+ 1,], K)
H([L,J+1,K]),H([I,], K + 1])
H(I+1,J+1,K]),H([I +1,J,K +1])
H({L,J+1,K+1)),H([+1,J+1,K +1])}.

B. Finding Subindex Values

In addition to the above table values, the trilinear interpolation
computation requires subindexes into the cube along each of the
three dimensions to determine how much to weight each of the
eight table values in a summation. Assuming float values were
used to create the table, the exact subindexes are given by the
values

SC:C—CI’J’K (8)
and the weights are given by products of the elements of the
vectors

wo = sC(RP— 1) ©)
ve =1 — we. (10)

Note that the elements of w, and v, are in the range O to 1.

C. Trilinear Interpolation

In the case of trilinear interpolation, the interpolated value is
computed as

t =H([L, J, K])[veli[ve]a[vels
+H([I+1,J, K)[we]i[ve]a[ve]s
+H([I,J + 1, K])[veli[we]a[ve]s
+ H([L, J, K + 1])[ve]i[ve]a[Wels
+H([I + 1,7+ 1, K])[weli[wela[ve]s
+H(I+1,J, K +1])[we]i[ve]a[we]s
+H([I,J + 1, K + 1])[ve]i[wel2[we]s

+ H([

I+1,J4+ 1, K+ 1)) [weli[welz[we]s (1)
where [v.]; denotes the ith element of vector ve.
D. Example
Let us return to our earlier example where P = 255 and

R = 17. Now consider a particular RGB input point given by
c = [230, 100, 95]7. The root cube index is computed using
(6) giving

I,J,K|T =14, 6, 5|7
[?)] b ’

which, using (3) is for the table sample value ci4,6,5 =
[223.1250, 95.6250, 79.6875]T.
The subindexes are given by (8), which gives

se = [6.8750, 4.3750, 15.3125]"

VRHEL: INDEXING OF MULTIDIMENSIONAL LOOKUP TABLES

and from (9) and (10), the weights for the interpolation are com-
puted from various products of the values

we =[0.4314, 0.2745, 0.9608]"
ve = [0.5686, 0.7255, 0.0392]7.

E. Integer Sampling

If integer values were used in the table construction, then
the table is actually nonuniform as mentioned earlier. In this
case, the cube index is determined exactly as outlined in Sec-
tion III-A. The subindexes are computed using

rrJ K = ROUND(CLJ?K) (12)
S¢ =C—TIIJK (13)
and the weights are computed using
[Sc]l
Wel1 =
el = G — Froh
[Sc]2
We =
A S PR gy
[Sc]3
W3 =
els = el — rols
Ve =1 —we (14)

where, again, [s.]; denotes the ith element of vector s.. The
above weight calculations account for the nonuniformity of the
table. The interpolation is performed using (11).

F. Tetrahedral Interpolation

Tetrahedral interpolation and other methods such as prism
and pyramid interpolation, reduce the number of points used
in the interpolation calculation [i.e., (11)] by dividing the
cube containing the vector c into subsections. In the case of
tetrahedral interpolation, an additional test consisting of three
compares is required to determine what subsection contains the
vector c. Each subsection uses only four points to compute an
interpolation as opposed to the eight points used in the trilinear
interpolation. The reader is referred to [6] for additional details.

For all of these interpolation methods, the indexing into the
table is performed identically to that of the trilinear interpolation
example described in the above section. The difference occurs
after this indexing process with the introduction of subindex
compares and a computationally simpler replacement for (11).

IV. EFFICIENT INDEXING METHODS

The indexing problem is to determine the values given by (6),
(9), and (10) in the floating point case, or (6) and (14) in the in-
teger case, in a fast efficient manner for an embedded system.
The normalizations (divisions) in (9) and (14) are typically pro-
hibitively expensive operations. In addition, if floating point cal-
culations are not available, then care must be taken in scaling the
data to achieve minimal error.

1321

TABLE 1II
TABLE SIZES SUITED FOR BIT-WISE SHIFT AND MASK INDEXING

Table Size R || Step Size (P = 255)

3 127.5
5 63.750
9 31.875
17 15.938
33 7.969
65 3.984
127 2.024

A. Bit Shift and Mask

One method for reducing computational cost, is to use the
upper bits of the elements of ¢ for the root index, and the lower
bits for the subindexes. This method works when the step size
is a power of 2, since simple shifting and masking can be used
to compute the indices. Unfortunately, the step size on the range
0 to 255 can never be a power of 2. There are table sizes where
the step size is close to a power of 2. These values are given in
Table II.

Note that since the step size is not exactly a power of two in
these tables, the method of bit-wise shifting and masking will
introduce an error.

Typically, the computation is performed as

P
L:ROUND(EtT>—1 (15)
S =logy(L+1) (16)
[I,JLKIT=c> S (17)
sc=c& L (18)

where the values of L and S are precomputed and coded in the
algorithm to compute the bit-wise AND operation & in (18) and
the bit-wise right SHIFT operation >> in (17). The weights are
computed using

Sc

c — 1

Ve T T (19)
_(L+1)—sc

Ve = T11 . (20)

Note that if L + 1 is a power of 2, then the normalization (di-
vision) is easily implemented with a bit-wise shift operation. If
(11) is used for the interpolation, then a final division by (L+1)3
could be performed assuming there is sufficient bits to hold the
temporary results. If there is not sufficient bits, multiple shifts
will be required.

B. LUT-Based Indexing

An alternative approach to using the bit-wise shift and mask
method is to use two 1-D LUTs of size P + 1 to compute the
index values. Note that the same table can be used for each di-
mension since the MLUT is uniformly sampled. The LUT-based
method has the advantage of working with any table size as well
as creating less error compared to the mask and shift method. In

1322

the case of integer sampled points, the root index table value for
input ¢ is given by

LUT;;x]i] = FLOOR <@> i=0,...,P—1

=R-2 i=P 21

The subindex weight table value is given by
LUT,, [i]= i=Ql i=[0,....P]

R ((LUTwskli]+1) + 725) - QL)
(22)
where

; . P

Q['L]:R<LUT]JK[’L]*R_1> (23)

and R(.) is the rounding operation.

Note that the weights LUT,,_[i] as expressed above are float
values between 0 and 1. In practice, these values would be ap-
proximated with a fixed-point representation. This is possible to
implement exactly with only a small error within one region as
will be shown.

C. Acceleration Methods

There are several acceleration methods for MLUT interpola-
tion discussed in [11, Section 11.4]. These methods are designed
to reduce the computational cost of indexing as well as the inter-
polation in (11). One approach is to make use of a cache or hash
coding method to avoid recomputing recently computed values.
For an embedded system, it would be necessary to consider the
trade-off of the cost of increased memory these methods re-
quire, versus the reduction in computational cost. The size of
the cache, the statistics of the image data, and the hash coding
function will greatly affect the efficiency of these methods. Note
that using a cache, or performing hash coding will have no affect
on the errors or the efficiency of the indexing method, which is
the focus of this paper.

Another class of acceleration methods discussed in [11] takes
advantage of the spatial frequency sensitivity properties of the
human visual system (HVS). Since the HVS is less sensitive
to high frequency chrominance errors compared to luminance
errors, methods which save computations at the cost of intro-
ducing high frequency chrominance errors are of interest.

To work efficiently, these methods require the input color
space to be a chrominance/luminance type such as YCrCb,
Kodak YCC, or CIELAB. Embedded systems that process
images for Color FAX (CIELAB) or JPEG images (YCC) may
use MLUTs that have such a property. Color copy operation
in MFPs will typically transform the scanner RGB data to the
printer CMY(K) space. In this case, it is not straight forward
to take advantage of these acceleration techniques. Since these
methods introduce errors in the interpolation calculation, and
our focus is errors from indexing, these techniques will not be
considered here.

D. Examples

The indexing locations for the above approaches can be easily
visualized in the case of P = 15 (signal ranges from O to 15)
with R = 5. Fig. 1 displays the float sample points as lines with

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

15 T T T T
1 [0 (o]
0.5 N N
0
0 2 4 6 8 10 12 14 16
Fig. 1. Circles denote uniform sampling at float values for P=15 and R=5.

Arrows denote the values to be interpolated.

15

05+ b H H H

0 I I I I I I N
] 2 4 6 8 10 12 14 16

Fig.2. Circles denote uniform sampling at float values for P =15 and R=5.
Arrows denote the values interpolated by bit shift and mask indexing.

circles (these are the sample points of the grid as defined by the
ICC). The actual values that are to be interpolated are show as
arrows and occur at the integer values O to 15. Note that the input
values do not fall on the sample points except at 0 and 15.

If the table was generated with float sample points, and bit
shift and mask indexing is used, then the interpolated values
will be computed as shown by the arrows in Fig. 2. Note that
these values are different than the ideal points which occur at
the integer values. Also note that the point 15 never occurs.

If the table was instead constructed using integer sample
points by rounding the float sample points, then bit shift and
mask indexing results in the interpolated values computed as
shown in Fig. 3. Again, the point at 15 is missing. This missing
point is taken up by a finer interpolation in the range from 8 to
11. A similar finer interpolation occurs in the P = 255 R = 17
sized table for the range from 128 to 143. This finer interpola-
tion has an advantage in that it keeps the number of segments
within each cube the same and allows the same normalization
(division) to be used in computing the weights. In other words,
the normalization of the weights can be implemented using
(19) and (20), which is a division of L 4+ 1 (an easy division

VRHEL: INDEXING OF MULTIDIMENSIONAL LOOKUP TABLES

05F A o N N 4

0 2 4 6 8 10 12 14 16

Circles denote uniform sampling at integer values for P = 15 and
R = 5. Arrows denote the values interpolated by bit shift and mask indexing.

05F A A A A A 4

0 2 4 6 8 10 12 14 16

Fig. 4. Circles denote uniform sampling at integer values for P = 15 and
R = 5. Arrows denote the values interpolated by LUT-based indexing.

when R is one of the values in Table II.) The disadvantage of
this method is that the value P is never created, and in fact
the samples greater than (P 4 1)/2 have an error. Note that
a 1 count error exactly at the black point or white point can
often introduce a large visual error, especially when the output
is halftoned. Some solutions to this problem in the 8-bit case
include the following.

1) If the input is white i.e., [255255255], then do not go
through the MLUT calculation, simply force the output
to be [255255255] (white).

2) If the MLUT output is 254, make sure it is mapped to 255
in a 1-D LUT that follows the MLUT operation.

These solutions can introduce artifacts near white.

The LUT-based method of indexing with uniform sampling
provides the values shown in Fig. 4. Note that there is an error
introduced in the range between 8 and 11. The values for the
LUTs are given in Table III, where as mentioned earlier, the
float values must be represented with fix point arithmetic. In
Table III, the index values are scaled by 4 and rounded. These
are the actual values that would be used in the computation of

1323

TABLE III
INDEX LUTS FORCASEP = 15 R =5

i [[LUTr &[] | LUTw.[i] | ROUND(LU Tw, [i] * 4)
0 0 0 0
] 0 0.25 I
2 0 0.5 2
3 0 0.75 3
4 1 0 0
5 1 0.25 1
6 1 0.5 2
7 1 0.75 3
8 2 0 0
9 2 0.3333 1
10 2 0.6667 3
I 2 1 4
12 3 0.25 1
13 3 0.5 2
14 3 0.75 3
15 3 1 4
TABLE IV

INTERPOLATED VALUES P = 15 R = 5

Float Point l Integer Shift I LUT Indexing

0.00 0.00 0.00
1.00 1.00 1.00
2.00 2.00 2.00
3.00 3.00 3.00
4.00 4.00 4.00
5.00 5.00 5.00
6.00 6.00 6.00
7.00 7.00 7.00
8.00 8.00 8.00
9.00 8.75 8.75
10.00 9.50 10.25
11.00 10.25 11.00
12.00 11.00 12.00
13.00 12.00 13.00
14.00 13.00 14.00
15.00 14.00 15.00

(11), with a final division by 2° or a right shift by 6 bits (since
there is a product of three of these values that were scaled by
4). The actual values computed by the methods are given in
Table IV.

E. Error Comparison

It is interesting to compare the errors of the bit shift and mask
indexing method and the fixed-point LUT-based method. Con-
sider again the example where P = 255 and R = 17. If the
float weights are scaled by 2%, then the only error that occurs
is in the range from 128 to 143 due to the limited bits for float
representation (similar to the error shown in Fig. 4 for the range
8 to 11). The error is shown in Fig. 5 where note that the error
is always less than 0.5.The error for the shift-based approach is
shown in Fig. 6. Note that the error is 1 for values greater than
or equal to 143. As mentioned earlier, an error at the white point
is particularly troublesome in many cases due to the sensitivity
of the human visual system to the reference white.

1324

05

04}

03

02

0.1

0.1

0.2

0.3

0. 4

%% 50 180 1éo 260 zéo

Input Value
Fig. 5. Fixed-point arithmetic LUT-based error for P = 255 and R = 17.

0.8F

0.6 =

Error

04f «

L I L L L
0 50 100 150 200 250
Input Value

Fig. 6. Fixed-point arithmetic Shift-based error for P = 255 and R = 17.

V. COMPUTATIONAL COST

The exact computational cost depends upon the types of op-
erations and memory access that can be performed in parallel.
Computationally, the only difference between the LUT-based
method and the bit shift and mask method is the computation
of the weight vectors w., v, and the cube index location
[1,J, K]T. Given an input vector ¢ and P = 255, R = 17, the
LUT-based approach performs the calculation

I= LUTIJK[[C]l]

J :LUT]JK[[C]Z] K = LUTIJK[[C]g] (24)
[Weli = LUTw. [[chi]
[Welz = LUTw,[[cl2] [We]s = LUTw,[[c]s] (25)
[vc]l =16 — [wc]l
[VC]2 =16 — [WC]2 [Vc]g =16 — [Wc]g (26)
and the shift-based method performs the calculations
1= [C]l >4
J=[cla>4 K=]c|z>14 27

[Wc] 1= [C] 1&0Fh

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

TABLE V
COMPUTATIONAL COST OF INDEXING METHODS

Method || MULT | ADD | SHIFT | AND | LOOK-UP
LUT-Based 0 3 0 0 6
Shift-Based 0 3 3 3 0

"Shl ey

Fig. 7. Input sSRGB image.
[Wc]z = [C]Q&OFh [C]g&OFh (28)
[Vc]l = 16 — [Wc]l
[VC]Q =16 — [WC]Q [Vc]g =16 — [Wc]g. (29)

The number of arithmetic operations required by each of these
methods is given in Table V. As mentioned, the computational
cost of these two methods will depend upon the exact architec-
ture of the hardware (e.g., number of MACs, ALUs, and parallel
memory banks). Looking at Table V, neither algorithm appears
to have a significant computational advantage.

VI. COLOR EXAMPLE

Since our application is color imaging, we will look at the
color error introduced by these indexing methods. Consider the
problem of transforming from sRGB to CIELAB. The transfor-
mation is known analytically, and is given in the Appendix for
completeness. One MLUT of size R = 33 was created to ap-
proximate the SRGB to CIELAB mapping. The interpolation of
the MLUT values was implemented with integer sample points
in sSRGB space and indexed as follows:

1) indexed using the method described in Section III-E,

which we will denote as IDEAL_INDEX;

2) indexed using the method described in Section IV-A,

which we will denote as SHIFT_INDEX;

3) indexed using the method described in Section 1V-B,

which we will denote as LUT_INDEX.
The sRGB image shown in Fig. 7 was operated on by the table
using the above indexing methods. This operation created three
CIELAB images. The AFEj, color difference was computed
between these images and the analytically transformed image

VRHEL: INDEXING OF MULTIDIMENSIONAL LOOKUP TABLES

TABLE VI
AVERAGE A EJ, ERRORS, MAPPING TO CIELAB
Starting color space
Method SRGB [y=5[~v=75]7=10
IDEAL_INDEX || 0.029 | 0.057 0.060 0.056
SHIFT_INDEX 0.175 | 0.250 0.249 0.194
LUT_INDEX 0.040 | 0.068 0.065 0.057
TABLE VII

MAXIMUM A E, ERRORS, MAPPING TO CIELAB

Starting color space

Method SRGB [y=5]~y=75]~7=10
IDEAL_INDEX 0.289 | 0.230 0.275 0.363
SHIFT_INDEX 0.593 | 0.745 1.050 1.363

LUT_INDEX 0.470 | 0.586 0.468 0.375

for each pixel. The definition of AE{, is given in the Ap-
pendix . To reduce errors from nonindexing sources, the table
values were double precision floating point CIELAB values
and floating point operations were used to calculate (11).

The magnitude of error is highly dependent upon the nonlin-
earity that is approximated by the MLUT. To demonstrate this,
consider a mapping from RGB to CIEXYZ given by

X 0.4124 0.3576 0.1805 T
Y | =[0.2126 0.7152 0.0722 g (30)
VA 0.0193 0.1192 0.9505 b

where r, g, and b are computed using (assuming an 8-bit range
on the input RGB values)

5

r= <2R> 31
(; Y

9= <255> (32)
13 ol

= <ﬁ) . (33)

Tables VIand VII contain the A £, errors for the three methods
for several values of v and for the case of sSRGB, which has
a gamma of approximately 2.4. Note that as the nonlinearity
increases, the maximum error introduced by the shift-based
method increases significantly.

VII. SUMMARY

The mathematics of MLUT interpolation were reviewed. A
comparison was made between a LUT-based indexing method
and a bit shift/mask method. The LUT-based method resulted
in less error with no additional computational cost. In addition,
the errors in the LUT-based method resulted in less visually no-
ticeable artifacts compared to the bit shift/mask based method.

APPENDIX

A. SRGB to CIELAB
The transformation from sRGB [2] to CIELAB is as follows.

1325

First transform from sRGB to CIEXYZ using

X 0.4124 0.3576 0.1805 r
Y | =1]0.2126 0.7152 0.0722 g (34)
VA 0.0193 0.1192 0.9505 b

where r is computed using (assuming an 8-bit range on the input
sRGB values)

(55) *12.92 (5&) < 0.04045

. (w)“ else

(35)

1.055

and ¢ and b are similarly computed. Given a computed [XY Z]
value, the transformation to CIELAB is given by

1/3
L* =116 (;) — 16 (36)
* =500 nX v Y v 37
= <X—> - (?) GD
) vy \1/3 Z\1/3
b* =200 <?n> — <Z_n>] (38)

for X/X,,Y/Y,,Z/Z, > 0.01. Since the assumed white
point of the sRGB color space is D65, [X,Y,Z,] =
[0.3127,0.3290, 0.3583].

B. AE3, Color Difference Metric

The CIE has updated AE?, with a new weighted version,
which is designated AFg,[12]. The new measure weights the
hue and chroma components in the AE”, measure by a function
of chroma. Specifically, given two CIELAB values [L1, a}, bj]
and [Ls, a}, b3], the measure is given by

AL*\? [ACH\? [AHY\?
AEY = ab ab
94 \/<k‘L5L> " <chC> " (kHSH) &

where

Sp=1
S =140.045CJ
Sy =1+0.015 Cy, (40)
Cf{m =4/ (a1)? + (b7)? (41
=V(L1 — Lp)? (42)
ACq =1/(Chyy — Capp)® (43)
AHZ =\[(AEZ)? — (AL")? — (ACE,)? (44)
AEg = /(L1 — Lo)? + (af — a3)2 + (b — b3)? (45)

and typically the weighting values are set such that
kp =kc=kng =1 (46)

The reference color C7, is used in (40). If neither color is the
reference, then the geometric mean of C},; and C,, is used.

1326

(1]

(2]

[3]

(4]

[3]

(6]
(71
[8]
[9]

[10]

REFERENCES

M. J. Vrhel and H. J. Trussell, “Color device calibration: A mathemat-
ical formulation,” IEEE Trans. Image Processing, vol. 8, pp. 1796—1806,
Dec. 1999.

M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a
standard default color space for the internet—-sRGB,” in Proc. IS&T/SID
4th Color Imaging Conf.: Color Science, Systems, and Applications,
Nov. 1996, pp. 238-246.

W. E. Schreiber, “A color pre-press system using appearance variables,”
J. Imag. Technol., vol. 17, no. 4, pp. 200-211, Aug. 1986.

M. C. Stone, W. B. Cowan, and J. C. Beatty, “Color gamut mapping and
the printing of digital color images,” ACM Trans. Graph., vol. 7, no. 3,
Oct. 1988.

P. Hung, “Colorimetric calibration in electronic image devices using a
look-up-table model and interpolations,” J. Electron. Imag., vol. 2, pp.
53-61, 1993.

H. R. Kang, Color Technology for Electronic Devices. Bellingham,
WA: SPIE, 1997.

“File Format for Color Profiles,” International Color Consortium, Spec-
ification ICC.1:2001-12.

A.U. Agar and J. P. Allebach, “A minimax method for function interpo-
lation using an SLI structure,” in Proc. ICIP , vol. 1, 1997, pp. 671-674.
J.Z. Chang, J. P. Allebach, and C. A. Bouman, “Sequential linear inter-
polation of multidimensional functions,” IEEE Trans. Image Processing,
vol. 6, pp. 1231-1245, Sept. 1997.

R. Bala, “Device characterization,” in Digital Color Imaging Handbook,
G. Sharma, Ed. Boca Rotan, FL: CRC, 2003, ch. 5.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004

[11] R. Bala and R. V. Klassen, “Efficient color transformation implemen-
tation,” in Digital Color Imaging Handbook, G. Sharma, Ed. Boca
Rotan, FL: CRC, 2003, ch. 11.

[12] “Industrial Color Difference Evaluation,” CIE, Tech. Rep. 116-1995,
1995.

Michael J. Vrhel (SM’93) received the B.S. degree
in electrical engineering from Michigan Technolog-
ical University, Houghton, in 1987 and the M.S. and
Ph.D. degrees from North Carolina State University,
Raleigh, in 1989 and 1993, respectively.

From 1993 to 1996, he was a National Research
Council Research Associate at the National Institutes
of Health (NIH), Bethesda, MD, where he researched
biomedical image and signal processing problems.
From 1997 to 2002, he was the Senior Scientist at
Color Savvy Systems Limited, Springboro, OH,
where he developed color device characterization software and low-cost color
measuring instrumentation. Since 2002, he has been the Senior Scientist
at ViewAhead Technology, Redmond, WA. His current research interests
include color imaging and measurement, device characterization, and efficient
algorithms.

Dr. Vrhel is a member of the SPIE and is currently serving as a Guest Editor
for the IEEE SIGNAL PROCESSING MAGAZINE, Special Issue on Color Image
Processing.

	toc
	Indexing of Multidimensional Lookup Tables in Embedded Systems
	Michael J. Vrhel, Senior Member, IEEE
	I. I NTRODUCTION
	II. MLUT S AMPLE P OINTS

	TABLE I T ABLE S IZES W ITH U NIFORM I NTEGER S TEP S IZES FOR $
	III. I NTERPOLATION
	A. Finding the Cube Index
	B. Finding Subindex Values
	C. Trilinear Interpolation
	D. Example
	E. Integer Sampling
	F. Tetrahedral Interpolation

	IV. E FFICIENT I NDEXING M ETHODS

	TABLE II T ABLE S IZES S UITED FOR B IT -W ISE S HIFT AND M ASK
	A. Bit Shift and Mask
	B. LUT-Based Indexing
	C. Acceleration Methods
	D. Examples

	Fig. 1. Circles denote uniform sampling at float values for $P\!
	Fig. 2. Circles denote uniform sampling at float values for $P\!
	Fig. 3. Circles denote uniform sampling at integer values for $P
	Fig. 4. Circles denote uniform sampling at integer values for $P
	TABLE III I NDEX LUT S FOR C ASE $P=15~R=5$
	TABLE IV I NTERPOLATED V ALUES $P=15~R=5$
	E. Error Comparison

	Fig. 5. Fixed-point arithmetic LUT-based error for $P=255$ and $
	Fig. 6. Fixed-point arithmetic Shift-based error for $P=255$ and
	V. C OMPUTATIONAL C OST

	TABLE V C OMPUTATIONAL C OST OF I NDEXING M ETHODS
	Fig. 7. Input sRGB image.
	VI. C OLOR E XAMPLE

	TABLE VI A VERAGE ΔE_{94}^{\ast} E RRORS, M APPING TO CI
	TABLE VII M AXIMUM ΔE_{94}^{\ast} E RRORS, M APPING TO C
	VII. S UMMARY
	A. sRGB to CIELAB
	B. ΔE_{94}^{\ast} Color Difference Metric

	M. J. Vrhel and H. J. Trussell, Color device calibration: A math
	M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, Proposal
	W. F. Schreiber, A color pre-press system using appearance varia
	M. C. Stone, W. B. Cowan, and J. C. Beatty, Color gamut mapping
	P. Hung, Colorimetric calibration in electronic image devices us
	H. R. Kang, Color Technology for Electronic Devices . Bellingham

	File Format for Color Profiles, International Color Consortium,
	A. U. Agar and J. P. Allebach, A minimax method for function int
	J. Z. Chang, J. P. Allebach, and C. A. Bouman, Sequential linear
	R. Bala, Device characterization, in Digital Color Imaging Handb
	R. Bala and R. V. Klassen, Efficient color transformation implem

	Industrial Color Difference Evaluation, CIE, Tech. Rep. 116 1995

