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Color Image Resolution Conversion
Michael Vrhel, Senior Member, IEEE

Abstract—In this paper, we look at the problem of spatially
scaling color images. We focus on an approach that takes ad-
vantage of the human visual system’s color spatial frequency
sensitivity. The algorithm performs an efficient least-squares (LS)
resolution conversion for the luminance channel and a low-com-
plexity pixel replication/reduction in the chrominance channels.
The performance of the algorithm is compared to a LS method
in sRGB and CIELAB color spaces, as well as standard bilinear
interpolation in sRGB space. The comparisons are made in terms
of computational cost and color error in sCIELAB.

I. INTRODUCTION

RESOLUTION conversion is a common operation in the
pipeline from image capture to image reproduction. The

resolution of the digital camera or digital scanner often does not
match that of the output device, making it necessary to perform
a scaling of the image spatial coordinates. In other cases, it is
desired to enlarge or reduce the captured image for aesthetic
reasons.

Devices such as multifunction peripherals (MFPs), which
FAX, copy, and scan with user-adjusted enlargement/reduction
settings, have very demanding resolution conversion require-
ments. In addition, the embedded systems in these devices
require computationally efficient algorithms.

Resolution conversion of monochrome images has been
heavily researched [1]–[18]. A naive approach to resolution
conversion in colorimetric images would be to apply the mono-
chrome algorithms to the three RGB channels that make up
the recorded image data. Such an approach would likely be
suboptimal in terms of quality and/or computational efficiency.

Many algorithms developed for color images take advantage
of the human visual system’s reduced sensitivity to chrominance
spatial variations compared to the sensitivity to luminance spa-
tial variations. Examples include [25] for temporal noise reduc-
tion, [26] for computational improvements on color correction,
[27] for color halftoning and of course color image and video
compression methods, like JPEG and MPEG [23], [24]. Missing
from the above list is a study of how the visual system’s proper-
ties can be used in an improved resolution conversion method,
which is the focus of this work. Some work has been done on
reducing the artifacts introduced due to subsampling of chromi-
nance channels in image compression methods [21], [22], but
little or no research has been published on color image resolu-
tion conversion.

Manuscript received April 19, 2004; revised April 22, 2004. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Zhigang (Zeke) Fan.

The author is with ViewAhead Technology, Redmond, WA 98052 USA
(e-mail: michael.vrhel@viewahead.com).

Digital Object Identifier 10.1109/TIP.2004.841194

In embedded systems, quality and computational efficiency
are of a great concern and, typically, tradeoffs are required be-
tween them. In the case of image resolution conversions, the al-
gorithms range from a low-quality, low computational-cost al-
gorithm, like pixel replication/reduction to a high-quality, high-
computational cost algorithm, like cubic spline least-squares
(LS) resolution conversion. In this paper, we propose an al-
gorithm for colorimetric image resolution conversion, which
falls between these two extremes. The algorithm performs a
high-quality LS conversion [1] for the luminance channel and
a computationally low-cost pixel replication/reduction in the
chrominance channels. The performance of the algorithm is as-
sessed and compared with other approaches in terms of compu-
tational efficiency and colorimetric error in sCIELAB [20].

The paper is organized as follows. Section II provides the de-
tails of the proposed algorithm. Section III provides quantitative
examples of the method’s performance in terms of sCIELAB
and computational efficiency.

II. EFFICIENT COLORIMETRIC RESOLUTION CONVERSION

In studying colorimetric color conversion, there are es-
sentially two variables to consider. One is the color space
(e.g., sRGB) in which the conversion will occur; the other is the
method (e.g., bilinear interpolation) used to scale the data. Here,
we limit the color spaces to those that are commonly used as
well as those that we suspect will provide the best performance.
In terms of interpolation methods, we rely upon research that
has been done on monochrome resolution conversion.

It is well known that the human visual system is much
less sensitive to high-frequency chrominance errors com-
pared to luminance errors. This characteristic can be used to
guide us toward an algorithm that reduces computational cost
without introducing large colorimetric errors. This suggests
an algorithm that performs its processing in a color space
that divides the luminance and chrominance channels. In this
case, a high-quality interpolation algorithm should be used
in the luminance channel, where high-frequency errors are
more noticeable, while a low-quality, low computational-cost
algorithm could be used in the chrominance channels, where
high-frequency errors can be tolerated.

A block diagram of such an algorithm is shown in Fig. 1.
The diagram shows a transformation to YCC color space [32];
however, other luminance-chrominance color spaces, such as
CIELAB, could also be used where , , and , replace Y, Cr,
and Cb, respectively. The primary factors in this decision are the
computational cost and the encodability of the processing color
space. Let us now focus on the details of the algorithm shown
in Fig. 1.
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Fig. 1. Block diagram of proposed color image resizing method.

Fig. 2. LS resolution conversion for linear b-spline approximation function at
a signal scaling of 1=�.

A. Luminance Channel

Unser et al. [1] introduced a monochrome resolution conver-
sion process that was optimal in the LS sense. The algorithm is
dimensionally separable, which is desirable for most embedded
systemssince theprocessing isusuallymoreefficient.Thederiva-
tion details of the algorithm are contained in [1].

Due to their favorable approximation and computational
properties [29], we will use a -spline representation for the
input signal. In particular, we will use a first-order (linear)
spline model allowing a fair comparison with the commonly
used bilinear interpolation method [3, Sec. 4.3.2]. The linear
-spline function is given by

else
(1)

The LS resolution conversion algorithm can be implemented as
a series of digital filters as shown in Fig. 2. The last filter in
Fig. 2 can be implemented as a series of recursive IIR filters as
described in [2].

The first filter, which is represented by the dashed box and de-
noted by in Fig. 2, appears as a shift variant FIR filter
(hence, the variables and ) with a dependency upon the scale
factor . The filter is created from the convolution of
two scaling functions, and (see [1] for details).
The filter’s shift variance occurs due to the possible noninteger
sampling rate change. Figs. 3 and 4 display a graphical example,
where the filter is convolved with the input samples

when the signal is to be reduced by (i.e., ).
Note how the coefficients of change depending upon
the spatial location of the data. In implementation, the filter co-
efficients can be computed from the continuous convolution

(2)

Fig. 3. Input signal and sample function s (x) for � =
p
2.

Fig. 4. Graphical illustration of convolution of f(k) and s (k; n) for � =p
2. Note in digital filtering, the filter coefficients will appear to be shift variant.

If computational resources are limited, the filter coefficients of
can be placed in a look-up-table (LUT) of size

where

floor (3)

is the size of the output signal, is the size of the input signal
and

ceil (4)

is the number of filter taps in .

B. Chrominance Channels

For the chrominance channels, a zero-order -spline approx-
imation of the input signal is used where

(5)
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Fig. 5. Text input image to scaling algorithms.

and

else
(6)

Sampling the signal at a rate of , to scale it by a factor of ,
results in

(7)

From (6) and (7), it can be shown that is given by

(8)

which is one of the current image pixels. In this approach,
no arithmetic operations are performed on the chrominance
channel pixels. The existing signal samples are either replicated
or removed. For implementation, a one-dimensional (1-D) LUT
the size of the output signal dimension can be computed which
indexes into the current signal.

III. PERFORMANCE AND EXAMPLES

The traditional colorimetric error quantities such as
and were developed for the comparison of solid patches.
Since we will be performing the operations on images that con-
tain spatial variation, it is necessary to consider an error mea-
sure that accounts for the human visual system’s (HVS’s) color
spatial frequency sensitivity. The spatial CIELAB (sCIELAB)
visual model provides one such measure [20] and is popular for
such assessments [31, Section 1.10].

Using this measure, the algorithm (LS-Y) in Fig. 1, using the
definition of YCC color space as defined in ITU-R BT.601 [32],
was compared to the following methods:

1) LS-sRGB: an sRGB LS approach, which applied the al-
gorithm in [1] to the bands of a sRGB [28] image;

Fig. 6. Child input image to scaling algorithms.

TABLE I
AVERAGE �E VALUES FOR IMAGES

2) LS-LAB: a CIELAB LS approach, which applied the al-
gorithm in [1] to , , and image bands;

3) Bi-sRGB: a standard separable bilinear method applied to
each of the bands of the sRGB image;

4) LS-Y Bi-C: a YCC approach, in which the algorithm in
[1] was applied to the Y band and standard separable bi-
linear interpolation was applied to the Cr and Cb bands.

For each method, the input image was reduced and then
enlarged by . The sCIELAB [20] between the input
and output was computed, for two viewing conditions. The
first was a CRT condition with a viewing distance of 18 in
(45.72 cm) and a resolution of 72 dpi. The second was a
print condition, with a viewing distance of 12 in (30.48 cm)
and a resolution of 300 dpi. Two input images were tested
and are shown in Figs. 5 and 6. The values (which
were the average error across the image pixels) are given in
Table I. The distribution of the errors for the child image
using LS-LAB, LS-Y, and Bi-sRGB are shown in Fig. 7
for the 72-dpi viewing condition.

Computationally, at a scaling value of the LS al-
gorithm requires five multiplies and four adds for each output
of . This is assuming the filter values are precomputed
and stored in a LUT. The cost of this precomputation would be
amortized across the pixels of the image and, hence, be a rela-
tively small cost. At a scaling value of , t he LS



VRHEL: COLOR IMAGE RESOLUTION CONVERSION 331

Fig. 7. �E error images for (from top to bottom) LS-LAB, LS-Y, and
Bi-sRGB.

algorithm requires four multiplies and three adds for each output
of . Regardless of the scaling size, the IIR filter

TABLE II
COMPUTATIONAL COST OF METHODS

Fig. 8. Interpolation comparison. From top to bottom, the image section is
input image, LS-Y, LS-sRGB, LS-LAB, Bi-sRGB, and LS-Y Bi-C. Note the
pixel errors in LS-Y versus the blurring errors in Bi-sRGB.

can be implemented with two additions and
three multiplications for each output point [19]. Since the op-
erations must be performed along each row and column, these
values must be multiplied by two to obtain the cost per output
pixel per color plane.

Implemented as a separable algorithm, the filter used for bi-
linear interpolation requires two multiplications and one addition
for each output point. Again, these values must be multiplied
by two to account for the processing along each row and
column. The chrominance channel algorithm in Section II-B
requires no multiplies or additions, assuming the indexing is
precomputed and, hence, amortized across the pixels of the
image.

Table II displays the number of multiplications and additions
required for each method. The computational cost of the color
transformations includes converting to and from the color space.
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The cost of the CIELAB operations was based on the implemen-
tation found in [30] where a 1-D LUT was used for the cube root
nonlinearity and for the sRGB nonlinearity.1

A. Discussion of Results

The smallest errors were achieved by the LS-LAB
and LS-sRGB approaches. These methods were also compu-
tationally the most expensive. The commonly used Bi-sRGB
algorithm created the largest errors but had the lowest
computational complexity. Fig. 8 displays a portion of the text
image of each approach for a closer comparison. In Fig. 8,
the loss of detail (blurring) for the Bi-sRGB method is clearly
visible.

The methods LS-Y and LS-Y Bi-C provide a solution be-
tween the low complexity of the Bi-sRGB and the detail pre-
serving methods of LS-LAB and LS-sRGB. Fig. 7 displays how
the errors are distributed for the two extremes and the LS-Y
image. The high-frequency nature of the errors is readily ap-
parent.

The optimal scaling algorithm for a particular application
depends upon a number of factors. One needs to consider
the available computational units (especially in an embedded
system), the amount of data that needs to be transformed,
and, in the case of an MFP, the page/minute that the device
must operate. As shown from the values (where the
300-dpi errors are smaller than the 72-dpi errors), the display
and viewing conditions will also play a significant role in
the visibility of errors.

IV. CONCLUSION

In many applications, it is necessary to consider the tradeoffs
between accuracy and computational cost. In this paper, we
introduced an algorithm for colorimetric image scaling that
provides a balance between the low-cost, low-quality, com-
monly used bilinear interpolation method and the high-cost
high-quality LS-algorithms discussed in [1]. The exact algo-
rithm that should be used for a particular application depends
greatly upon the system resources, display method, and user
expectation, to name a few.
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