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Projection Based Prefiltering for Multiwavelet Transforms

Michael J. Vrhel and Akram Aldroubi

' Abstract— We introduce a methed for initializing the multiwavelet
decomposition algorithm, The initialization procedure is the orthogorial
projection of the input signal inte the space defined by the multiscaling
_ function. The approach will always have a solution, places no restrictions
on the input (except that it be contpined within L;), and can be
implemented in a fast a]gonthm. We present the details of our appmach
and compare it with another proposed method of prefiltering.

I INTRODUCTION

A mwultiwavelet algorithm provides flexibility in terms of wavelet

design over a traditional uniwavelet algorithm allowing simulta-
neously compactness, orthogonality, symmetry, and regularity in
addition to providing superior energy compaction [1]. Mathemati-
cally, the multiwavelet decomposition can be expressed as follows.

Let the vector _
= (" @) @ (o) (@)

be the multiscaling function that generates the multiresolution spaces
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The multiwavelet transform decomposes a signal f(z) € Vo as
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where ¥ = (9! (2),¢?(2),...,¢"(2))7 is the multiwavelet associ-
ated with the multiresolution spaces V; [1]-{5].

Much of the work en multiwavelet decompositions has involved the
design of the multiscaling function ® and an associated mu‘luwavelet
¥. The typical assumption is that the coefficients chikyi=1,.
are available. In practice, however, we have available only the

samples f[k /7], or more realistically, we have the sampling model.

shown in Fig. 1.

The prefiltering problem involves determining the coefficients
ch(k) i = 1,...,r from the samples f[k/r]. If it is assumed that
the signal f (a:) is contained in V5, then the initialization problem is
one of interpolating the function '

(=Y Y dme'e-n.

=1 k€Z
Xia et al. [1] provide details on what to do for this case. Since it
is necessary to compute v coefficients for each knot, f{x} must be
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Fig. 1. Typical sample acquisition model.

sampled at a rate of 1/r (i.e., f|k/r]); this will provide a determined
system of equations. Expressing (1) in terms of the samples of f(x)
provides a system of convolution equations that can be expressed as
the matrix-vector convolotion

s(k (B *c}{k) (2

where the elements of the vectors and matrix are the sequences
[sli(k) = fik+ (i — L)/r),
[Bls; (k) = ¢ (k+ (i — 1)/r), 3)
[eli(k) = 5 (k)
and the matrix-vector convolution operator is defined as

I=r
ol (k) s= 3 S (Bla(helitk — b). @
=1 hEZ

The above matrix convolution operation is simply & mixture of
mairix-vector multiplication and sequence convolution,

The prefiltering problem involves the inversion (in the convo-
lutional sense) of the matrix-sequence B(k), A drawback of this
interpolation approach is that the inverse is not guaranteed to exist
(an example will be shown later). In addition, the method is inflexible
since it requires f{z} € Vo, which implies that if we change our space
Vo, then the model of our (unchanged) data changes as well.

Here, we provide a solution to the problem of prefiltering that does
not suffer from existence problems and does not require f(z) € Vo.
The case of f{x) € Vo is more realistic since we have only samples of
f{=z) that are usnally not related to the chosen multiwavelet transform.
These samples are, however, related to the impulse response of the
acquisition device (cf., Fig. 1), which can provide a model for the
signal.

Since we want t0 decompose the signal in terms of ®, we would
like to find the signal in ¥, that best approximates f(z). For this
reason, we approach the prefiltering problem as one of computing
the orthogonal projection of the signal into the space defined by the
multiscaling function [10]. The atiractive features of this approach
are that a solution always exists:(unlike the interpolation approach
described in [1], we obtain the exact signal if it is already contained
within Vg, as is assumed in [1]), and if the signal is not contained
in Vo, we will obtain the best approximation of f{z) in the least
squares sense. ' ’ ' |

II. ORTHOGONAL PROJECHON METHOD

.Again, we assume that we have available samples f[k/r] of the
signal f(x). Unlike the inierpolation approach, however,  we have
the flexibility to assume that f(z) does mot belong to' ¥5 but is -
contained in some other subspace ${A;.). This subspace should
in principle depend on the impulse response of the device used to
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Fig. 2. System diagram of orthogonal projection initialization. '

sample f(x) (cf., Fig. 1). For example, f(@) may be bandlimited
and then sampled, in which case, A = sinc would be an appmpnate
‘model [6]). If the impulse response of the measuring device is not
available, a model for () can be présciibed such as a spline model,
in which casé, A = " The subspace $(A, ) must have the property
that an mterpolauon basis exists. If the subspace does not have this
property, then without additional 1nformat10n about the signal, it is
not possible to obtain the necessary coefficients by linear filtering.
The mterpolatlon property of the space S5t /r) will allow us to
obtain, from samples of f(a:) the coefﬁclenls elk) assoclated with
the decemposition [7]

HEOEDY e(k)A{mr - k) (5

. keZ
where here, we assume that $()y,.) is defined by a single generating
functmn, X(z). Since we want to decompose the signal in terms of P,
we would like to find the signal in Vy that best approximates f {x).
If our criterion is least squares, then the solutlon is the orthogonal
projection of f{r) into V5.

The appmnmatlon that we wish to find is glven by

Y Y dmeE-k

i=1 heZ

falz) =
The actual signal can be-expressed as

f0)= Y Tllewbie Ol (e =k = (i~ 1)

=1 kEZ
= Z E[(é*f i), (R sl — kb —
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where [b];, (k) = b(kr), Aiyp(z) = A(rz), and 8i(k) denotes the
unit impulse sequence located at k = i.

(i - 1/ry

The approximation fa(x) (or equivalently ch(k) i = 1,...,7) is
found by solving the orlhogonallty condition _
Af(x) '—fg(w,tp(ill—k)}=0 i=1...,n keZ.

These equations are expressed in the matrix-vector convolution
format - '

(A*c)(k) (D +e)(k)
where )
ALtk = (7 @™)EE IDlatk) = (A, ) (k)
eli(k) = ch(R) feliCk) = (e + 6, (k) G
PV@) = g=a); M, (e) = Mplz = (= D).

The coefficients i (%) are obtained by inverting the matrix sequence
A(k). Unlike the interpolation approach, the convolution-inverse of
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Fig. 3. '(z) of the Hermite cubic spline miultiresolution.

A(k) is guaranteed to exist 's.ince & is a Riesz basis of Vo [8]. Thus,
the orthogonal projection is

e(k) = ({A) "« D = e)(k). ' (8)

A system diagram is shown in Fig. 2. The filter (A, /)" (k) is the
convelution inverse of thé discrete filter X, s~k [71.

It is often desirable to return to the signal coefficients e(k) fm_m
co(k) i.=1,...,7 {ie., postfiltering). This operation can be achieved
by perfor:mng the inverse of the above filter. If the inverse of D(k)
does not exist, then the postfiltering operation can be implemented
by projecting into S(X, /,-) from-Vo. As in the prefiltering case, the
projection operator -is guaranteed to exist.

1IN IMPLEMENTA’I’!ON AND RESULTS

The procedure o obtam the mltlahzauen by pl'O]eCth[l is as
follows.

1)  Choose a model for f{x) as described by (5).

2} Choose the analyzmg multlresolutmn Vo: thus, the multiscal-

ing function $ = (), ) e’ as desired.

3) Compuie the convolution operators A and D using (7).

- 4) Compute the coefficients c usmg (8. '

To demonstrate the usefulness of our methoq:l, we consider the
initialization of a multiwavelet transform associated with the Hermite
cubic spling multiresolution [9]. The two chosen (r = 2) scaling
functions are shown in Figs. 3 and 4. These functions have the
property that if '

fle) = Z AR - k) + (k)" (@ — k)

kEZ

then the coéfficients are given by c.;{k) = f(®)|n=s and f(k) =
F'{#)|c=k- In"other words, the samples c; 5 (k) are the signal samples,
and the samples cj(k) are the samples of the signal derivative.
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Fig. 4. ?{x) of the Hermite cubic spline multiresolution.
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Fig. 5. Signal contained in 5(3; ;) but not 1.
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Fig. 6. Computed c}{k) coefficients for the signal in Fig. 5.

A. Matrix-Sequence Inverses

Since the convolution inverse of a matrix sequence is not a

traditional signal processing operatian, a brief discussion of a method
for implementation is appropriate. Let us express the sequence A (k)

in terms of its coefficients [A];;(k) = ai; (%), which for the case -

¥ = 2 gives us ]
_ e (k) o 2(k).
Alk) = [a;(k) a;(k)]'

The convolution inverse of the matrix sequence Alk)is glven bya
matrix sequence

- _ C}:u(k) Orm(k)
A (k)_ [ﬂz1(k} O.'-zz{k)jl

which satisfies the condition

asam= [ G ©

where the matrix-matrix convolution operation I( L) (B =+ C)ik)

is defined by

D]u(k)

EZ[BLJ (R)Cy; (k — k).

=1 he€Z
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Fig. 7. Computed ci (k) coefficients for the signal in Fig. 5.
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Fig. 8. Orthogonal projection of the signal in Fig. 5 into Vo.

Now, let us consider the Fourier trané_form of A(k), which we define
as the Fourier transform of the scalar sequences of each element of
the matrix, that is '

Alfy =1, ! .
) [am(f) an(f)

From the above two definitions, it is simple to show that the matrix
convolution operation in the time domain is equivalent to computing
matrix products in the frequency domain. In other words

dn(f) &12(f)]

.(10)

D(k) = (B+ C)(k) & D(f) = BHC().
Therefore, in the Fourier domain, (9) becomgs
Aparm=|y {] sepn an

Equations {10} and (11) have the implication that the convolution
inverse of the matrix A (k) exists if and only if the matrix A(f) is
nonsingular for f € [0,1]. The above equation leads to a method
for approximating the sequence A~'(k) similar to that used for
computing the convolution inverse for scalar sequences, We first
sample the Fourier transform A({f), producing a matrix sequence
A(/M) 1 = 0,..., M. Bach of these matrices are inverted (in
the conventlonal sensc), resultmg in a sequence A- Y{1/M). An
approximation of the convolution inverse of A(k) is computed
from the inverse discrete Fourier transform of the matrix sequence
A-YI/M) 1 = 0,...,M. The accuracy of the inverse can be

assessed by computing (A * A~")(k} and ohserving how close

the resulting matrix comes to the identity mamx For example, one
measure that could be used is

_ 6k 0

< £
F

where || || 7 is the Frobenius norm, and ¢ is related to the computer
precigion.

Note that if A(k) is FIR, then A~ (k) will decay exponentially
fast, In addition, A~'(k) can be efficiently implemented by a
recursive algorithm. o -
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Fig. 9. Signal contained in 5(8) and Vo.

b

14-| 1.]6 1 22 24
-2 ' .

Fig. 10. Computed cg(k ) coefficients for the signal in Fig. 9.
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Fig. 11. Computed c3(k) coefficients for the signal in Fig. 9.
B. Interpolation Approach

For the Hermite cubic spline multiscaling function, an interpolating
set of functions does not exist. In other words, the convolutional

inverse of matrix B(k) [cf., (2)] does not exist. The singularity can -

be easily shown by computing the Fourier transform of the filter

— . (110) (0,0)
Bk = [(1/2,1/2) (-1/8, 1/8)]

which is given by the matrix
. 1 0
8= 0/ + ) (/8 (e

)

As mentioned, the matrix B(f) must be nonsingular for f € [0, 1]
which is not true since the matrix B{(0) is smgular

C. Orthogonal Projection Approach

Unlike the interpolation approach, a solution always exists for our
projection-based method. In addition, the signal need not be contained
within V5. However, if the signal is within ¥, then the approximation
will be exact since we are performing a projection operation into Vo.
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Fig. 12, Gerommo Hardin, and Massopust multiscaling function: Liz)
solid and (m) dashed.
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Fig. 13. Comparison of pmeﬁl;ering with projection-based method and in-
tcpolauon -based method.

Example I—Inpur Signal Not in Vo: As an example, let us assume
that our signal is contained within the space 5(8;/s) deﬁned by a
1/2 scaled cubic B-spline function. That is

flay ="y e(k}B(2z - k). 6)

keZ

The cocfficients e{k) are easily computed from the samples f{%/2)
by use of the inverse filter (5,/2)”'(k) [7]. Note that since

" f(z) is not guaranteed to have C™ smoothness at the points

x = (2k + 1)/2, the space 58,2} is not contained in the Hermite
cubic spline space V;. The signal shown in Fig. 5 is contained
in 5{B1/2) but not Vi. The exact coefficients starting at & = 0
are given by e(k) = [0....,0,2,6,3,—1,2,-5,3,0,0,...] where
the first 20 coefficients are zero. Fig. 8 displays the orthogonal
projection of this signal into the space Vp. The coefficients
ck) = [0,...,0,0.309,4.88,0.572, —1.85,0.915,0.118,
0.032,0.009,0,....0] and c3(k) = [0,....0,1.445,3.088,
3.507,0.905, —7.086, —1.413, —0.394, —0.111,0,...,0], which
are shown in Figs. 6 and 7, are the sample values of the projection
and the sample values of the projection’s derivative, respectively.
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Example 2—Input Signal in Vo: For this example, we use a
‘function in the cubic B-spline space S{3). One such signal
can be expressed in terms of (6) with coefficients e(k) =
1/8 [0,...,0,-1,—-6,-15,—-20, —14,1,23, 48,54, 25, -13,
-26,—-17,-6,—1,0,0,...], where the first 30
are zero. It is not difficult to show that S5{(8) C V.
Filtering this signal, shown in Fig. 9 through the system in
Fig. 2 provides the coefficients cj(k) = [0,...,0,-0.0192,
—0.832, -2.27, 0.261, 5.62,2.941, —2.807, —0.868, —0.0198,
0,...,0], and c§(k) = [0,...,0,-0.087,~1.79,0.103,4.52,
4,42, —9.131, -0.079,1.95,0.091,0,...,0] displayed in Figs. 10
and 11. Since the signal is already in the space V5, our projection
approach provides coefficients that are exactly the sample values of
the signal and its derivative. For this example, the direct interpolation
approach [1] cannot obtain cj{k) and ¢ (k), even though the signal
is in Vp. The reason is that the matrix sequence (B)~'(k) does not
_exist as mentioned at the beginning of this section.

D. IMerpoJ_,’arioﬁ versus Least Squares

To compare the interpolation-based method with our method,
it is necessary to select a multiscaling function for which the
interpolation based approach will work. One such multiscaling

function was introduced by Geronimo ef al. [2]. The multiscaling .

function is shown in Fig. 12. A signal that is contained in the space
S(3172) is shown in Fig. 13 with the least squares and interpolation
approximations. The exact coefficients for the input signal are
given by e(k) = [0,...,0,-6,6,-3,4,0, 5,-6,5,—~3,0,0,...]
where the first nine coefficients are zero. Prefiltering the signal
with the interpolation method gives cj(k) = [0,9.0,0,—1.187,
0.038,1.573,1.302,0.490, —0.531, 0,0,0], and 2(k) = [0,0,
0,0, —2.122, —~0.236, 1.061, —1.65, —0.825, 0, 0, 0,0], whereas
the projection method gives cy(k) = [0,0,0,0, -1.239,
1.52, 1.67, 1.60, 0.958, —0.612, 0, 0, 0], and c}(k) = [0, 0.0,
0.145, —2.29, —0.195, 1.30, —1.816, —0.798, 0.071,0,0,0)]. The
interpotating method and the projection method produce square etrors
of 1.13 and 0.84, respectively. Both methods were implemented via
matrix sequence convolutions.

IV. CONCLUSION

We have introduced a new method for initializing (by prefiltering)
the multiwavelet decomposition algorithm. “The approach has the
following attractive features: '

+ The projection filter will 'alwaj!é. exist, unlike the interpolation

filier.

+ If the signal is contained within the space defined by the
multiscaling function, then the projection solution will be an
exact approximation of the signal,

+ The method is more flexible and general than previous methods
since it provides a least squares solution when the original signal

" is mot contained in the space defined by the multiscaling function.

« [f the matrix sequence A(k) is FIR, then the initialization

algorithm is a fast filtering algorithm.
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