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Multichannel Restoration with
Limited A Priori Information

Michael J. Vrhel,Member, IEEE,and Michael UnserSenior Member, |IEEE

Abstract—We introduce a method for multichannel restoration ~frequencies (i.e., frequency nulls). Because the location of
of images in which there is severely limited knowledge about these frequency nulls is a function of the defocus setting, it

the undegraded signal, and possibly the noise. We assume thatig 5 4yisable to record multiple images of the same object at
we know the channel degradations and that there will be a .
varying degrees of defocus [5].

significant noise reduction in a postprocessing stage in which . . ) .
multiple realizations are combined. This post-restoration noise ~ T0 keep from damaging the specimen, high resolution elec-

reduction is often performed when working with micrographs of  tron micrographs of biological macromolecules are recorded at
biological macromolecules. The restoration filters are designed |gyw electron doses. The use of a low electron dose produces

to enforce a projection constraint upon the entire system. This . . . P . .
projection constraint results in a system that provides an oblique an image with a low signal-to-noise ratio (SNR), typically

projection of the input signal into the subspace defined by the ONn the order Qf 0 dB. In_ pract_ice, the noise is rEdUQE‘d in
reconstruction device in a direction orthogonal to a space defined a postprocessing phase, in which a large number of images

by the channel degradations and the restoration filters. The of identical specimens are combined. In the simplest case,
approach achieves noise reduction without distorting the signal e macromolecules have a preferred three-dimensional (3-
by exploiting the redundancy of the measurements. D) orientation and the different views of the specimen are
combined by correlation averaging [6]. When the particles
are randomly oriented, data reduction is achieved through
ULTICHANNEL restoration problems occur in many3-D reconstruction. This type of processing is much more
image processing applications including color imaginghallenging and is currently only applicable when the particles
electron microscopy, and remote sensing [1]-[4]. Classicalkxhibit a very high degree of symmetry (e.g., icosahedral
the restoration problem is framed in the discrete domain whigiruses) [7]. Such 3-D reconstructions provide extremely valu-
constrains the signals to be bandlimited. In addition, prieible structural information on viruses and there is currently a
information is typically assumed to be available in the fornstrong incentive for improving their resolution [8].
of the original signal’s power spectrum, higher order spectra, The situation is therefore one in which we have many noisy
or constraining sets. In some applications, this informatigmages of the same object (possibly at different orientations)
may be difficult to determine or estimate from the recorde@r several focus settings. A block diagram of the entire
data. A particular example occurs in electron microscopy, fitocess is shown in Fig. 1. Since there will be significant
which the exact structure of the object under examination mayise reduction in the combining of these multiple images, it is
be unknown. This example has motivated us to consider tgtical that the individual images are not overly smoothed in
problem of multichannel restoration with limited prior infor-the restoration phase. Statistical multichannel deconvolution
mation about the undegraded signal. The restoration problg@roaches such as Wiener filtering [2], [9], or Bayesian
is formulated in the continuous domain using notation similghethods [10], [11] require prior information about the input
to that described in [13]. This approach places no constraiR§gnal, which may be difficult to obtain in practice, especially
on the input signal (e.g., bandlimitedness is not required) othgry case such as electron microscopy in which a prototype
than finite energy. Since our primary motivation for this worky 346 is not available. Without the correct signal statistics,
came from a problem in electron microscopy we will brieflyhe s of statistical methods can result in a distorted signal
describe where our approach fits into the overall problem giimate [1], [11], [12]. In addition, the exact amount of noise
imaging biological macromolecules. reduction achieved in the postprocessing must be known for
_In electron microscopy, there exists a tradeoff betweeps gtatistical methods if significant smoothing is to be avoided.
image contrast and the amount the image is in focus. AS ¥giq information is difficult to determine due to the complexity
image is brought into focus, its contrast decreases. For sy q iterative 3-D reconstruction algorithms that incorporate
reason, high-resolution electron micrographs are recorded Wg ticle symmetry conditions and use an undetermined number

a significant amount of defocus. This results in a degradati Pparticles In other words, it is often not known how many
that includes the complete loss of information at certain Spatmhividual images will be ’used in the reconstruction until

Maf_‘UtSC”%t_t fece“'eg_ vae"t‘}?ef 20, 19?6tih,fe‘/ised M?Yt 5, d1998- Thie reconstruction algorithm is completed. Another important
associate editor coorainating tne review o IS manuscript and approvin . . . s . .
it for publication was Prof. Stephen E. Reichenbach. CBnsideration is that most statistical methods achieve noise
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Fig. 1. Overview of multichannel restoration problem in electron microscopy application.

Our approach to this multichannel deconvolution problem ighere r;(k, j) is the recorded data for channgl ¢;(k, j)
one which requires no prior information about the input signadre idealized noise-free recorded values(k,;j) is signal
The method is a multichannel extension of the generalizewiependent additive noisg(x, y) is the continuous input, and
sampling problem discussed in [13] and includes as a specjg|—z, —y) is the impulse response in thith channel. Note
case a current processing technique in electron microscahpgt in practice the only information available 4g(—x, —y)
[14]. The approach incorporates knowledge of the final rend r;(k,5) ¢ = 1,---, V.
construction method, which can include splines, wavelets, orThe goal is to reconstruct an estimate of the continuous
display devices. In addition, unlike most classical formulatiorsgnal f(x, y) from the recorded values(k,j) ¢ =1,---, N.
the input signal is not required to be bandlimited; it can bé/e will achieve this goal by digital filtering and by a suitable
an arbitrary finite energy function. The method enforces raconstruction method. Fig. 2 contains a diagram of a two
system projection constraint which produces less smoothialgannel system which includes the measurement process and
of the signal than the statistical techniques, at the experiBe restoration/reconstruction process. THe are the digital
of less noise reduction. The projection constraint ensures mstoration filters to be designed. The functiey{z, v) defines
loss of signal information if the input signal is includedhe output signal subspace which we denote by
in the reconstruction space (e.g., the class of bandlimited
functions, cubic spline functions, etc.). The residual in sugh _
a case will consist of noise only. As already mentioned,0
:)k;eeslicﬁrrgrr])er::(e:;sogrraepEsmcuIarly relevant for the restoratio h(z,y) = ZZ‘PO(UE by — ok g) | plk, ) € 1o
The following mathematical notations are used in this paper.

L, is the space of measurable, square-integrable, real-valued ) ) ) . .
functions. Note that this formulation ol provides us with a discrete

> is the vector space of square-summable sequences r&RresenFation (via_the sampleték_,j)) anc_i a continuous
discrete signals) model (viah(x,y)) of our output signal ¥, is the space of
. e Ny . all signals which can be decomposed in the above fashion).
, , = z)f(x)dx is the inner product
é%(grgt{éri)?nLQ o< 9@)f (@) do P The integer translates afo(xz — k,y — j) are a set of basis

The Fourier transform of a discrete 2-D signdk, j) will functions which define the output signal subspace. Typically,

be denoted byR(u, v) wo(z,y) = sinc(z)sinc(y) (separable sinc) but our model
Th . e d foll We will first d ,bis sufficiently general to include many other representations
€ paper 1S organized as Tollows. Ve Will TI'St CeSCTIbg, .y 5q splines and wavelets [15]. Thereforepdfz,y) =

the approach mathematically in Section Il. Section Il deals . . ;
. : L - L x , then all output signals produced by this system
with the selection of weighting coefficients to minimize th sluc(a) siuc(y) put sig P y 4

. ) . . . . ust be bandlimited. Note, however, that we have not placed
noise reS|dl_Je n the restoreq Image. In S_ectlon_ v, we consl q{y constraints on the input signélz, %) (e.g., the signal need
some practlgal |r.nplem'entat|on issues. Finally in Section V Yot be bandlimited) and if some other set of basis functions
conclude with simulations. were selected to defing, (e.g., translations of a cubic spline),

then the output signal would also not be bandlimited even
Il. THE PROJECT|ON CONSTRA|NT though we are Sampling a.nd d|g|ta”y f|lter|ng (Cf [13])

The system output can be divided into two portions as

shown in Fig. 2 where we have the output as the sum

A. Problem Formulation 5 . . .
f(z,y)+n(z,y). Since the system is linear, we can use

Mathematically, the recording process for &hchannel f(; ,) to represent that portion of the output caused by the

ik

system can be represented by input f(x,y). The portions(z,y) then represents the output
. . . caused by the noise inputs(k,j) ¢ = 1,---,N. Similarly,
ri(k, j) = (pi(z — k,y = 5), f(z,9)) + ni(k, j) the input tog (z, ) is divided between an input signal related

=ci(k,j)+ni(k,j) i=1,---N (1) portiond;(k,j) and a noise related portiof, (&, j).
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f(x,yL (p‘(—x,—y) > ><> Cl(kJL(E) rl(k,]l q](k,j) dj.(k,j)+a'n(k,j)
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Fig. 2. Two-channel system whesgz,y) = 3>, Z,‘ 8x —k,y—7j).

> fley)+ilxy)

The goal is to design the digital filtegs(k,7) i = 1,---, N, whered(k, j) € [, are the discrete coefficients which describe
using no prior signal information such that if it is possiblef(z,y) in Vo. The projection requirement implies
for the reconstruction process to reprodyie, y) (that is if ~
flz,y) € Vo), then f(z,y) = f(z,%). In other words, we Jay) = f(@y),
do n_ot wan'_[ to d_istort t_he nonnoise_ pqrtion of the output |, equivalently
possible. With this requirement, designing the overall system
(from f(x,y) to f(x,y) as shown in Fig. 2) to act as a d(k,5) = ds(k, 7). (3)
projection operator becomes desirable. Specifically, if the ) . .
system is a projection operator, then given that the inplif'® Sample values in channefor the input f(x,y) can be
Ff(z,y) satisfiesf(x,y) € Vo, the output portionf(z,y) will EXPressed by the inner product

be a perfect reconstruction of the input signal. ci(k, )

It is, of course, possible that the inpyt(z,y) is not
contained inV;,. This situation implies that our reconstruction — — <Z Z d(k, ) eolz — kyy — §), ile — Ly — m)>
method (throughypo) cannot recreate the signgiz,y). In »

this case, the best solution, in the least squares sense, is the
orthogonal projection off(x,y) onto Vy. Since f(z,y) is

not directly available (nor is any prior information about the
signal), the least squares solution is difficult to obtain when = »_ > d(k, faci(l — k,m — 5)
f(z,y) ¢ V. For such an input, our projection-based system ik

provides, as an estimate, the projectionféf, y) onto Vo in \ynere the sequences (k, j) are defined as

the direction orthogonal to a subspace defined by the input

impulse responses and the filteggk, 5) ¢ = 1,---, N. This aoi(k,j) = (wo(z — k,y — j),i(x — Ly —m)). (4)
oblique projection provides consistency with the measured i
values which is the only information available abdfftr, ). These sequences also correspond to the sampled version of
By consistencyve mean that if the output portiof(x,y) (the the cross-correlation between the output and mputb functions
nonnoise related portion of the output) were fed back into ttge @ndw:. In the system, the measurement valugé, j) are

input of the system, then we would obtain the same idealiz&fiered by ai(k. j) and summed over= 1,---, N to give us

J k
= Zd(kvj)«aO(w_kvy_j)7<pi(w_lvy_m)>
&

J

noise-free values;(k,j) i = 1,---,N [cf. (1)] that were @r(k;J). Because of (2) and (3), we obtain
obtained when the input wag(z, y). N

At this point the only constraint that we have placed upon Z(d xag; * q)(k,J) = d(k, j)
our system is that it must be a projection operator. A linear i=1

operatorP’: L, — V4 is a projection operator if it satisfies theg,

following property: N

\V/f € V07 Pf = f Z(GOi * QZ)(ka) = 6(k7J) (5)
=1
The filterfs (k. j) i = 1,.---N are the .parame.tersf that W& the Fourier domain, (5) is expressed as
have available to achieve a system that is a projection operator
onto Vy. Therefore, let us consider what general class of filters N
would provide us with an overall system (as shown in Fig. 2) ZAOi(’“v v)Qi(u,v) =1 (6)
that satisfies the above projection property. =1
where Q;(u, v) is the Fourier transform of; (4, %) and

Aoi(u,v) = DN Bo(u— kv — )®i(u—k,v—j) (7)
ik

B. Projection Constraint Formulation
A general signalf(z,y) € Vy can be decomposed as

Fla,y) = dk, j)polz — k,y — j) (2)  with ®;(u,v) the Fourier transform ofy;(,y), and & the
ik complex conjugation ofb. Therefore, any set of filters that
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provides a projection solution must satisfy (5) or equivalently The above optimization problem can be compared to the
(6). optimization problem that leads to most classical methods
In Appendix A, it is shown that all projection solutions aréncluding the Wiener filter. This optimization problem is

given by the class of filters win || f(k, 5) — (f(k,5) — 2(k, )]
Vi, v)Aoi(u, v)
Qi(u,v) = ZN Vi (u, 0 Ao (u, v) 2 (®)  where sampling of the signals is usually performed (hence
g=1 PR TR0 f(k,7) instead of f(,y)) and the criterion is to minimize
where the coefficientd;(u, v) are weighting terms that pro- the mean square error betwggn the input si.gnal and .th.e OL_Jtput
vide degrees of freedom in the filter design while enfordata. Thus, the noise is explicitly contained in the optimization

ing the overall system projection constraint. ¢f,(z,y) = Process and the solution depends upon the power spectrum of
sinc(z) sinc(y) (separable sinc), then we can show that (8)1€ noise and the power spectrum of the input signal. This
reduces to a restoration approach in microscopy [14]. approach requirea priori information that we are assuming
For a set of projection filters, the subspace to which tie Not always available and that may be difficult to obtain.
projection is orthogonal is Thus far, we have introduced the idea of imposing a
projection constraint on the entire system by our selection of
v, the filters ¢;(k,j) ¢« = 1,---,N. This has led to an infinite

number of filters (by selection of the weight parameters) that
= h(z) = Z Z oolz — ky — p(k, 5) | p(k, 5) € I provide a system that is a projector. At this point it is necessary

% to consider a criteria which will select the “best” filter set out
of this family. An obvious choice for a criteria is one that
where considers what until now we have ignored: the system noise.
pqle —k.y —J) [ll. OPTIMIZATION OF WEIGHTS
N .
_ Z Z Z ik — m, § — n)@i(x — m,y —n) Ideally, the weightd/;(«, v) should be selected to reduce the

noise at the system output. Previous work in this area has pro-
vided only heuristic methods for selecting the weighting terms
can be considered the overall input impulse response of fha]. Here, we will consider two situations. In the first, it is
system. Note that while the filterg are discrete, the function assumed that the power spectrum of the noise is known, while

=1 m n

@, is continuously defined. in the second case, the noise power spectrum is unknown. In
both cases, the noise is assumed to be uncorrelated between
C. Comparison to Classical Methods channels (which is a reasonable assumption in the case of an

electron microscope focal series), and the restoration filters

Whil ifies all soluti h ' i
ile (8) specifies all solutions that are projectors ingoit re of the form given in (8).

does not necessarily correspond to a meaningful optimizatig
problem in the spatial domain. A related problem with a more .

accessible interpretation in the spatial domain is to minimiZe Known Noise Power Spectrum

the cost function The power spectrum of the noise after the summation of the

N output of the restoration filters is

min Z [[wi  (r; — €))7 al
1, 9N P P]\r(U,, U) - Z |Qi(uvv)|2Pni(u7 U)

=1

wherer; is a vector containing the noisy measurement values

ri(k, ), € is a vector containing the measurement valughere P, (u,v) is the noise power spectrum introduced in
for the case in which the system outpfttz, y) + 7i(z,) is channeli. The goal is to minimize the output noise power
reapplied to the input [i.e., it passes through the input filtekghich is equivalent to selecting the weights such Hatw, v)
and is sampled; cf. Fig. 2 and (1)], aw; is a weighting is minimized at each frequency. From the form of (8) it is clear
filter with transfer functiori?; (u, v). This weighting filter will that if Vi(u,v) ¢ = 1,---, N was the optimal solution, then
typically accentuate some spectral components of the errorahi(u,v) would also be optimal. Therefore, the problem of
the Fourier domain, the solution to the above optimizatioRinimizing Py (u,v) can be approached as minimize
problem is N

|W; (u, v)|2 Agi (u, v) Z |Vi(w, v)]?| Ao (u, 0)[* P, (u, 0)

_ T I T I (9) =1

N

Y AW (w, ) |2] Ao, (u, v) |2 _ .
2ej= Wi (s 0l o (. ) with respect toV;(u,v) < = 1---, N subject to the normal-
which is a subset of the collection of filters given in (8) (e.gization constraint
Vi(u,v) = |W;(u, v)|?). The above cost function measures the N
degree to which the estimatg(x,y), is consistent with the ZVZ‘(U/’U)AOi(U/a v) =K
ideal measurements(k,j) i = 1,...,N. i=1

Qi (U'v /U) =
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where « is a positive constant. Minimization leads to thgparametric methods [1]). Methods discussed in [16] may be of

optimal weights particular significance for this problem.
1
Vi(u,v) = ———.
(u, ) P, (u,v) IV. PRACTICAL ISSUES
It is therefore optimal to place low weight where the noise is If there is an area of the frequency spectrum for which
significant. no signal information is obtained, then the projection-based
approach can seriously overamplify the noise. If possible, the
B. Unknown Noise Power Spectrum frequency nulls of each channel should be selected such that

. . . they are not close to one another. That is there should not be
If the noise power spectrum is not known, one can still make . .
spatial frequencyiy,vo for which

a reasonable selection of the weighting terms to reduce fhe
noise power at the output. If the system is a projection operator ®i(ug,v0) M0 i=1,-
and the input signal is contained within the subspace defined B ’

by the recons?ructio_n device, then r_educing th_e system'’s t0falhe case of electron microscopy, the frequency null locations
power output is equivalent to reducing the noise power at the, “olaced” by adjusting the defocus setting of the microscope

output. prior to recording the image. Careful selection of the focal

The reason only the noise power is reduced becomes Clegfiings can produce a collection of images that have no
when the system output is again expressed as the summatQfi,mon frequency nulls. If this selection is not possible, then

Flzy) + iz, y) a clipping operation may be performed on the restoration filters
. prior to their use, which will avoid a boosting of the noise.
where f(z,y) is produced by the inpuf(z,y) and7(x,y) Mathematically, this operation can be represented by
represents the output caused by the noise inpytg;, j) '
i = 1,---N. If the system is a projection operator, and if Q. (,) = {561(@(“’”))’ Qi(u,v) > 6

f(z,y) € Vo, then a change in the weightg;(u,v) will E Qi(u,v), else

roduce the samef(z, since f(zx, = f(x, but
\?vill produce a dif?;f’en?{%(a(c,y). TJ;(is g%aracté(ristﬁ:))of the yvhere the parametéris determined by the level of noise. This

projection system means that reducing the total output Sig,ﬁ%ﬂsimilar to thg regularizatior_1 of inverse filters as described

power will reduce only the output signal power caused H{ [17]- Interestingly, for the single channel cag¥ = 1) the

#(z,y) and notf(z,y) when f(z,y) € V. ilter Q¢ (u,v) with 6 = 1.0 is a commonly used restoration
We would therefore like to design the filters such that tH@€thod in electron microscopy (assuming the only degradation

overall total power output is minimized. Let the summation di€ing corrected isin[;(u, v)] [cf. (10)]. This filter amounts
the digital filter outputs be given in the Fourier domain by to simply correcting the phase reversals which occur from the

N.

SR

N degradation.
D RS ' R Registration of the images prior to the final summation in
(1, 0) = D Q) B (1, v) Fig. 2 is a nontrivial problem especially in images as noisy
j=1

as those found in electron microscopy. In practice, the images
whereR;(u,v) = C;(u,v) + N;(u, v) is the known measure- must be preprocessed to enhance contrast and reduce noise.
ment in channej, C;(u,v) is the noise-free value in channelThese preprocessed images are then used in a routine which

J, and N, (u,v) is the noise in channel. determines a geometric transformation to apply to the images
Similar to the known noise case, this problem can Wer registration [18], [19].

expressed as The restoration method we have described requires knowl-

. 5 edge of the exact frequency response of the channel degra-

H%%.HEHD(“’ v)I} dations. In many applications, these degradations must be

] estimated from the recorded data [20]—[26]. In the case of elec-
subject to the normalization constraidt’", Vi(u,v)|4o; tron microscopy, the noise is such that there may be significant
(u,v)|* = &. This normalization is included to account for theincertainty in the estimate of the defocus parameters which
fact that the solutiond;(w,v) and aV;(u,v) i = 1,---,N define the channel responses. For the electron microscopy
are equivalent. application, the noise-free Fourier transform of the recorded

Using a matrix notation and dropping the frequency varralues is given by (cf. [5])
ables for simplicity, the optimal weights are given by
R;(u,v) = H;(u,v)(6(u,v) + sin[y;(u, v)])S(u,v)  (10)

Y !la
V= v 1a . - i i
a a where S(u, v) is the Fourier transform of the input signal and
where [Y];x = Re{AojAoE{R;Ri}}, a = [[Ao1|%, -+, Hi(w,v)(8(u,v) + sin[y;(u,v)]) is the frequency response of
|[Aon|?]*, and v = [Vi,---,Vy]*. Details of this solution channeli, which is to be estimated; here, amplitude contrast

are provided in Appendix B. Due to the significant amourgffects have been ignored. The functiffp(u,v) is a lowpass
of noise in electron micrographs, it is necessary in practice function that is produced by source coherence effects. The
use regularization in estimating{ R; R } (e.g. windowing or termsin[v;(u, v)] includes phase reversals and frequency nulls,
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Fig. 3. Frequency response of channels. Fig. 4. Undegraded chirp image.
which are a function of the microscope focal setting. For the
ith channel;y;(u,v) is given by

2m [Co(u? + v\t Afi(u? +v?)\?

A 4 2

where )\ is the operating wavelength of the microscopg,

is the spherical aberration of the objective lens, ahd;

is the focal setting of the microscope for thith channel.
The quantity A is determined by the voltage setting of the
microscope and is known priori. The spherical aberration
is known a priori and is often provided by the microscope
manufacturer. To estimate the shape sbi[vy;(u,v)] ¢ =
1,..., N it is necessary to determine the paramet&rs for

i =1,---,N from the recorded data.

The first step in estimating the\f; ¢ = 1,---, N in-
volves computing an estimate of the power spectrum of the
recorded data which we denote [y;(u,v)|. Since the term
sinf[y; (u,v)] is radially symmetric (assuming minimal astig-
matism), the power spectrum estimate is radially averaged.
Minima of the radially averaged functiod; (f)|* will occur \ith » = 3.69274 pm, C. = 2 mm, Af; = 500 nm,
near the zero c.rossings of the functi@ilm[fyi(()',v.)]. Due' 0 Af, = 700 nm, andAf; = 1100 nm, whereH;(u, v) is the
the extreme noise and the effects B{(, v), it is possible |owpass function produced from source cohererfég(u, v)
that only one or two minima are distinguishable. If more nullg; exponentially decaying and depends upon the focus value,
are visible, the defocus is determined by computinganonlinqﬁévebngth, and other known microscope parameters. The
least squares fit between the data and a model which assupgs; profile of each channel frequency response is shown
first-order Markov properties for the signal and the noise. #i rig 3. A sampling rate of 0.333 nm/pixel was simulated
only a few minima are visible, then the defocus parametgfih 256 x 256 images. White Gaussian noise was added to

is estimated using estimated minima locations. The positi@h,qyce an average SNR of 0 dB. Specifically the SNR was
of the minima are usually estimated using a local quadraji$easyred as

fit. Cepstral based approaches [26], [27] are not useful for
estimating the defocus, since the nulls @f[y;(u,v)] are SNR= 1010g<

not equally spaced. In the next section, we provide some ) ) ) )
simulation results. where 7 is the variance of the noise-free degraded signal

in channeli and o2, is the variance of the noise added
V. SIMULATIONS to each channel. Multiple realizations of the restored image
were produced and then ensemble averaged to simulate the
®Rbise reduction achieved by combining multiple specimens.
The noisy degraded outputs of each channel are shown in

D (u,v) = Hy(u, v)(6(u,v) +sin[y;(w,v)]) i=1,2,3 Figs. 5-7. The simulated chirp image is used since it demon-

~ilu,v) =

Fig. 5. Simulated recorded data for channel 1.

2 2 2
ol + o3 +03>

2
3O—noise

Here we perform a three-channel simulation in which a t
image shown in Fig. 4 is degraded by
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Fig- 6. Simulated recorded data for channel 2. Fig. 8. Projection-based restoration filters.

Fig. 7. Simulated recorded data for channel 3.

Fig. 9. Projection-based multichannel restoration using optimal weights.

strates the limitations of the restoration methods very well. ) ]
Similar results are achieved with other images (e.g., Lena)€Stimated as the periodogram of a prototype image. We put

For the output space, we selected the separable sinc. In @ligselves in the best possible conditions using the correct
chirp image as the prototype. The optimal Wiener filter was

case _ determined by minimizing the mean square error in each
Agi(u,v) = Z ZreCt(u — kv —j)@i(u— kv —j) individual realization. Fig. 11 shows the restoration result
ik when using the chirp image as the prototype for 0 dB SNR with
= &;(u,v) for [u],|v] < 1 avergging over 15 realizations. A; far as the high-frequency
2 details are concerned, the result is obviously much worse as
that is the Ay;(u,v) ¢ = 1,2,3 are simply bandlimited the one displayed in Fig. 9. This example exacerbates the

(and conjugated) versions of the degradation fil@gsw, v) signal distortion problem associated with some of the standard
1 = 1,2,3. The frequency radial profiles of the projectionstatistical methods.
based restoration filters with optimum weights for white noise, In this particular simulation setting, we can obviously do
Vi(u,v) = 1.0, are shown in Fig. 8. The restoration using thbetter with a global Wiener solution that also takes into account
filters in Fig. 8 is shown in Fig. 9 after the averaging ovethe noise reduction achieved in the postprocessing averaging
15 realizations. The resulting residual is shown in Fig. 18tage. This global solution is equivalent to the previous one if
Note that the residual in Fig. 10 does not contain any signak assume that the noise variance in each individual image is
information (i.e.,f(z,y) — (f(z,y) + a(z,y)) = n(z,y)). divided by the number of realizations. The restoration results
For comparison, we also performed a multichannel Wientrat are globally optimum in the Wiener sense are presented in
restoration [2] in which the power spectrum of the input waBig. 12. Not surprisingly, there is a much better filtering of the
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Fig. 10. Residual image for projection based restoration shown in Fig. 9Fig. 12. Optimal multichannel Wiener restoration (minimum mean square
error).

Fig. 11. Multichannel Wiener restoration using chirp image as prototype h-
followed by an averaging over 15 realizations. The Wiener filter is optimiz

on an individual basis for each realization qﬂg. 13. Incorrect global Wiener restoration using Lena image as prototype.

noise compared to the results in Fig. 9. However, there is siiiformation that is not correct may cause significant distor-
some attenuation of high-frequency details and it is not entirgipns. This distortion is illustrated by Fig. 13, which shows
clear which result is the best for a human observer. In additidhge restoration with a global Wiener filter that uses the Lena
as mentioned in the introduction, it may be very difficult inmage as the prototype; the modeling of the noise is correct and
practice to design a Wiener filter that is globally optimumaccounts for the averaging performed during postprocessing.
because the exact noise reduction that will be achieved in the~inally, in Fig. 14 we have provided a plot of the square
reconstruction phase of Fig. 1 is not knowrpriori. For the error between the restoration and the original image versus the
3-D reconstruction of randomly oriented particles, this noiggumber of realizations combined. From the graph, it is clear
reduction will depend a lot on the data (which orientations atbat as the number of realizations increases, the projection
available, the type of symmetry, etc.), and on the reconstrdzased restoration approaches the optimal Wiener restoration.
tion algorithm which is very complex [28], [29]. Moreover, theln addition, note that if the noise reduction achieved in the
noise reduction is very unlikely to occur in a space-invariapostprocessing stage is not accounted for in the Wiener filter,
fashion. Applying a global Wiener solution is also problematithen there is little improvement in the restoration as the number
in the simpler case of correlation averaging because it is neceb+ealizations increases. Last, for the images that we have
sary to register the individual realizations and to detect outliesshown (averaged over 15 realizations), note that although the
prior to averaging [30]. Last, the Wiener solution is very mucprojection-based restoration image has a larger square error
dependent on tha priori knowledge, which is typically not than either Wiener restoration, the projection-based restoration
available in these biological applications [12]. Using prioimage preserves all of the signal detail.
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1000 g Substituting this solution into (A-1) leads to
b b
L = N— = —,
800 Ej:l Py Aoj 1
- Optimal Wiener Therefore, the filterd’ <« = 1,---, N can be expressed in the
0-Optimal Wiener ) )
5 600 - Projection-Based . form given in (Al).
=
?; APPENDIX B
v 400 % . . .
S ] Here we drop the frequency indices for clarity. The problem
T i is to minimize
200 -
. N 2
S 2
—— E{D|*} = E{ D> Q,R,
0 - P R S—— ar— T j=1
0 50 100 150 200 250 300

Number of Realizations

N N
Fig. 14. Square error for projection and Wiener restorations versus number =F Z QjRj Z Qilt;
of realizations averaged. Jj=1 i=1

VI. CONCLUSION with respect toV; ¢ = 1,---, N subject to the normalization

Unlike classical statistical-based methods, the projectiGRnstraint

based restoration preserves all of the information about the N

original signal when the signal is contained in the recon- ZVi|A0i|2 =K

struction space. In such a case, the residual will consist of i=1

noise only. This makes the method useful for applications - ] o

such as electron microscopy in which noise is reduced YH€re @; = ,Ao;V;. Incorporating the constraint into the

a postprocessing stage and for which there is ligtlpriori cost function, differentiating with respect 1§, and setting the

information about the original signal or the amount of noisg®nstants = 1 produces

reduction that will be obtained in the postprocessing stage. N
QRE{AOk ZAOZ‘VZ‘SM} = NAol? k=1,---,N (B1)

i=1

APPENDIX A

We will plropthe frequency indices for clarity. First CO”Side{}vhere)\ is the Lagrange multiplier associated with the con-
a set of filters of the form straint and Sy; = E{R.R;}. Multiplying both sides of
_ Vidoi ' the above equation by, summing over the index, and

Ej;l Vi) Ao |? incorporating the constraint provides a value for

%

satisfy the projection constraint given by (5), which in the A= 2ZRe AOkZAOiViSki

We wish to show that a filter expressed in this form will always N N
Vi
Fourier domain becomes k=1 i=1

al AB =1 This value is substituted back into (B1), and with algebraic
2 028 = 2+ manipulations we obtain the following matrix equation:

Substituting theB; ¢« = 1,-.-, N into the above expression Yv=avlYv

immediately shows that the set of filters will produce a system _

which is a projection operator. where[Y];x = Re{do;AoSjr}, a = [[doi]?,- .., [Aon
Next, we wish to show that any arbitrary set of filters = [V1,---, Vx]*. Matrix Y is not guaranteed to be of full

P, i = 1,---,N which satisfy the projection constraintrank. If the matrix does have full rank, then the solution for

Zi;l Ag:P; = 1 can always be expressed in the form v is

V; Ao Y 'a
i = —02 (A1) V= alY-la
> j=1 VilAojl

The problem is to find a set of weights i = 1,---, N such If Y has rank P < N, then using the pseudoinverse

- _ 7T 1 ; ;
that the above relationship is true. A solution is to select the = UA~ U’ in place of Y~ provides the solution
weights for v where UU* = Iy.n, UAU? is an eigendecompo-

- - sition of Y, A is a diagonal matrix with diagonal entries
vV, = {Pi/AOi Ags #0 [A1,---,Ap,0,---,0], and A~ is a diagonal matrix with
0 Agi = 0. diagonal entrie$\; !, ---,A51,0,...,0].

2]T’
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