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Multichannel Restoration with
Limited A Priori Information

Michael J. Vrhel,Member, IEEE,and Michael Unser,Senior Member, IEEE

Abstract—We introduce a method for multichannel restoration
of images in which there is severely limited knowledge about
the undegraded signal, and possibly the noise. We assume that
we know the channel degradations and that there will be a
significant noise reduction in a postprocessing stage in which
multiple realizations are combined. This post-restoration noise
reduction is often performed when working with micrographs of
biological macromolecules. The restoration filters are designed
to enforce a projection constraint upon the entire system. This
projection constraint results in a system that provides an oblique
projection of the input signal into the subspace defined by the
reconstruction device in a direction orthogonal to a space defined
by the channel degradations and the restoration filters. The
approach achieves noise reduction without distorting the signal
by exploiting the redundancy of the measurements.

I. INTRODUCTION

M ULTICHANNEL restoration problems occur in many
image processing applications including color imaging,

electron microscopy, and remote sensing [1]–[4]. Classically,
the restoration problem is framed in the discrete domain which
constrains the signals to be bandlimited. In addition, prior
information is typically assumed to be available in the form
of the original signal’s power spectrum, higher order spectra,
or constraining sets. In some applications, this information
may be difficult to determine or estimate from the recorded
data. A particular example occurs in electron microscopy, in
which the exact structure of the object under examination may
be unknown. This example has motivated us to consider the
problem of multichannel restoration with limited prior infor-
mation about the undegraded signal. The restoration problem
is formulated in the continuous domain using notation similar
to that described in [13]. This approach places no constraints
on the input signal (e.g., bandlimitedness is not required) other
than finite energy. Since our primary motivation for this work
came from a problem in electron microscopy we will briefly
describe where our approach fits into the overall problem of
imaging biological macromolecules.

In electron microscopy, there exists a tradeoff between
image contrast and the amount the image is in focus. As the
image is brought into focus, its contrast decreases. For this
reason, high-resolution electron micrographs are recorded with
a significant amount of defocus. This results in a degradation
that includes the complete loss of information at certain spatial
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frequencies (i.e., frequency nulls). Because the location of
these frequency nulls is a function of the defocus setting, it
is advisable to record multiple images of the same object at
varying degrees of defocus [5].

To keep from damaging the specimen, high resolution elec-
tron micrographs of biological macromolecules are recorded at
low electron doses. The use of a low electron dose produces
an image with a low signal-to-noise ratio (SNR), typically
on the order of 0 dB. In practice, the noise is reduced in
a postprocessing phase, in which a large number of images
of identical specimens are combined. In the simplest case,
the macromolecules have a preferred three-dimensional (3-
D) orientation and the different views of the specimen are
combined by correlation averaging [6]. When the particles
are randomly oriented, data reduction is achieved through
3-D reconstruction. This type of processing is much more
challenging and is currently only applicable when the particles
exhibit a very high degree of symmetry (e.g., icosahedral
viruses) [7]. Such 3-D reconstructions provide extremely valu-
able structural information on viruses and there is currently a
strong incentive for improving their resolution [8].

The situation is therefore one in which we have many noisy
images of the same object (possibly at different orientations)
for several focus settings. A block diagram of the entire
process is shown in Fig. 1. Since there will be significant
noise reduction in the combining of these multiple images, it is
critical that the individual images are not overly smoothed in
the restoration phase. Statistical multichannel deconvolution
approaches such as Wiener filtering [2], [9], or Bayesian
methods [10], [11] require prior information about the input
signal, which may be difficult to obtain in practice, especially
in a case such as electron microscopy in which a prototype
image is not available. Without the correct signal statistics,
the use of statistical methods can result in a distorted signal
estimate [1], [11], [12]. In addition, the exact amount of noise
reduction achieved in the postprocessing must be known for
the statistical methods if significant smoothing is to be avoided.
This information is difficult to determine due to the complexity
of the iterative 3-D reconstruction algorithms that incorporate
particle symmetry conditions and use an undetermined number
of particles. In other words, it is often not known how many
individual images will be used in the reconstruction until
the reconstruction algorithm is completed. Another important
consideration is that most statistical methods achieve noise
reduction at the expense of some signal degradation. Many
biological scientists are not comfortable with this idea. They
would rather be presented with undistorted noisy data and rely
on their own visual system for noise reduction.

1057–7149/99$10.00 1999 IEEE



528 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 4, APRIL 1999

Fig. 1. Overview of multichannel restoration problem in electron microscopy application.

Our approach to this multichannel deconvolution problem is
one which requires no prior information about the input signal.
The method is a multichannel extension of the generalized
sampling problem discussed in [13] and includes as a special
case a current processing technique in electron microscopy
[14]. The approach incorporates knowledge of the final re-
construction method, which can include splines, wavelets, or
display devices. In addition, unlike most classical formulations
the input signal is not required to be bandlimited; it can be
an arbitrary finite energy function. The method enforces a
system projection constraint which produces less smoothing
of the signal than the statistical techniques, at the expense
of less noise reduction. The projection constraint ensures no
loss of signal information if the input signal is included
in the reconstruction space (e.g., the class of bandlimited
functions, cubic spline functions, etc.). The residual in such
a case will consist of noise only. As already mentioned,
these properties are particularly relevant for the restoration
of electron micrographs.

The following mathematical notations are used in this paper.

is the space of measurable, square-integrable, real-valued
functions.

is the vector space of square-summable sequences (or
discrete signals).

is the inner product
operation in .
The Fourier transform of a discrete 2-D signal will
be denoted by .

The paper is organized as follows. We will first describe
the approach mathematically in Section II. Section III deals
with the selection of weighting coefficients to minimize the
noise residue in the restored image. In Section IV, we consider
some practical implementation issues. Finally in Section V we
conclude with simulations.

II. THE PROJECTION CONSTRAINT

A. Problem Formulation

Mathematically, the recording process for an-channel
system can be represented by

(1)

where is the recorded data for channel
are idealized noise-free recorded values, is signal
independent additive noise, is the continuous input, and

is the impulse response in theth channel. Note
that in practice the only information available is
and .

The goal is to reconstruct an estimate of the continuous
signal from the recorded values .
We will achieve this goal by digital filtering and by a suitable
reconstruction method. Fig. 2 contains a diagram of a two
channel system which includes the measurement process and
the restoration/reconstruction process. The’s are the digital
restoration filters to be designed. The function defines
the output signal subspace which we denote by

Note that this formulation of provides us with a discrete
representation (via the samples ) and a continuous
model (via ) of our output signal ( is the space of
all signals which can be decomposed in the above fashion).
The integer translates of are a set of basis
functions which define the output signal subspace. Typically,

(separable sinc) but our model
is sufficiently general to include many other representations
such as splines and wavelets [15]. Therefore, if

, then all output signals produced by this system
must be bandlimited. Note, however, that we have not placed
any constraints on the input signal (e.g., the signal need
not be bandlimited) and if some other set of basis functions
were selected to define (e.g., translations of a cubic spline),
then the output signal would also not be bandlimited even
though we are sampling and digitally filtering (cf. [13]).

The system output can be divided into two portions as
shown in Fig. 2 where we have the output as the sum

. Since the system is linear, we can use
to represent that portion of the output caused by the

input . The portion then represents the output
caused by the noise inputs . Similarly,
the input to is divided between an input signal related
portion and a noise related portion .
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Fig. 2. Two-channel system wheres(x; y) = k j �(x � k; y � j).

The goal is to design the digital filters ,
using no prior signal information such that if it is possible
for the reconstruction process to reproduce (that is if

), then . In other words, we
do not want to distort the nonnoise portion of the output if
possible. With this requirement, designing the overall system
(from to as shown in Fig. 2) to act as a
projection operator becomes desirable. Specifically, if the
system is a projection operator, then given that the input

satisfies , the output portion will
be a perfect reconstruction of the input signal.

It is, of course, possible that the input is not
contained in . This situation implies that our reconstruction
method (through ) cannot recreate the signal . In
this case, the best solution, in the least squares sense, is the
orthogonal projection of onto . Since is
not directly available (nor is any prior information about the
signal), the least squares solution is difficult to obtain when

. For such an input, our projection-based system
provides, as an estimate, the projection of onto in
the direction orthogonal to a subspace defined by the input
impulse responses and the filters . This
oblique projection provides consistency with the measured
values which is the only information available about .
By consistencywe mean that if the output portion (the
nonnoise related portion of the output) were fed back into the
input of the system, then we would obtain the same idealized
noise-free values [cf. (1)] that were
obtained when the input was .

At this point the only constraint that we have placed upon
our system is that it must be a projection operator. A linear
operator is a projection operator if it satisfies the
following property:

The filters are the parameters that we
have available to achieve a system that is a projection operator
onto . Therefore, let us consider what general class of filters
would provide us with an overall system (as shown in Fig. 2)
that satisfies the above projection property.

B. Projection Constraint Formulation

A general signal can be decomposed as

(2)

where are the discrete coefficients which describe
in . The projection requirement implies

or equivalently

(3)

The sample values in channelfor the input can be
expressed by the inner product

where the sequences are defined as

(4)

These sequences also correspond to the sampled version of
the cross-correlation between the output and input functions

and . In the system, the measurement values are
filtered by and summed over to give us

. Because of (2) and (3), we obtain

or

(5)

In the Fourier domain, (5) is expressed as

(6)

where is the Fourier transform of and

(7)

with the Fourier transform of , and the
complex conjugation of . Therefore, any set of filters that
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provides a projection solution must satisfy (5) or equivalently
(6).

In Appendix A, it is shown that all projection solutions are
given by the class of filters

(8)

where the coefficients are weighting terms that pro-
vide degrees of freedom in the filter design while enforc-
ing the overall system projection constraint. If

(separable sinc), then we can show that (8)
reduces to a restoration approach in microscopy [14].

For a set of projection filters, the subspace to which the
projection is orthogonal is

where

can be considered the overall input impulse response of the
system. Note that while the filters are discrete, the function

is continuously defined.

C. Comparison to Classical Methods

While (8) specifies all solutions that are projectors into, it
does not necessarily correspond to a meaningful optimization
problem in the spatial domain. A related problem with a more
accessible interpretation in the spatial domain is to minimize
the cost function

where is a vector containing the noisy measurement values
is a vector containing the measurement values

for the case in which the system output is
reapplied to the input [i.e., it passes through the input filters
and is sampled; cf. Fig. 2 and (1)], and is a weighting
filter with transfer function . This weighting filter will
typically accentuate some spectral components of the error. In
the Fourier domain, the solution to the above optimization
problem is

(9)

which is a subset of the collection of filters given in (8) (e.g.,
). The above cost function measures the

degree to which the estimate, , is consistent with the
ideal measurements .

The above optimization problem can be compared to the
optimization problem that leads to most classical methods
including the Wiener filter. This optimization problem is

where sampling of the signals is usually performed (hence
instead of ) and the criterion is to minimize

the mean square error between the input signal and the output
data. Thus, the noise is explicitly contained in the optimization
process and the solution depends upon the power spectrum of
the noise and the power spectrum of the input signal. This
approach requiresa priori information that we are assuming
is not always available and that may be difficult to obtain.

Thus far, we have introduced the idea of imposing a
projection constraint on the entire system by our selection of
the filters . This has led to an infinite
number of filters (by selection of the weight parameters) that
provide a system that is a projector. At this point it is necessary
to consider a criteria which will select the “best” filter set out
of this family. An obvious choice for a criteria is one that
considers what until now we have ignored: the system noise.

III. OPTIMIZATION OF WEIGHTS

Ideally, the weights should be selected to reduce the
noise at the system output. Previous work in this area has pro-
vided only heuristic methods for selecting the weighting terms
[14]. Here, we will consider two situations. In the first, it is
assumed that the power spectrum of the noise is known, while
in the second case, the noise power spectrum is unknown. In
both cases, the noise is assumed to be uncorrelated between
channels (which is a reasonable assumption in the case of an
electron microscope focal series), and the restoration filters
are of the form given in (8).

A. Known Noise Power Spectrum

The power spectrum of the noise after the summation of the
output of the restoration filters is

where is the noise power spectrum introduced in
channel . The goal is to minimize the output noise power
which is equivalent to selecting the weights such that
is minimized at each frequency. From the form of (8) it is clear
that if was the optimal solution, then

would also be optimal. Therefore, the problem of
minimizing can be approached as minimize

with respect to subject to the normal-
ization constraint
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where is a positive constant. Minimization leads to the
optimal weights

It is therefore optimal to place low weight where the noise is
significant.

B. Unknown Noise Power Spectrum

If the noise power spectrum is not known, one can still make
a reasonable selection of the weighting terms to reduce the
noise power at the output. If the system is a projection operator
and the input signal is contained within the subspace defined
by the reconstruction device, then reducing the system’s total
power output is equivalent to reducing the noise power at the
output.

The reason only the noise power is reduced becomes clear
when the system output is again expressed as the summation

where is produced by the input and
represents the output caused by the noise inputs

. If the system is a projection operator, and if
, then a change in the weights will

produce the same (since ) but
will produce a different . This characteristic of the
projection system means that reducing the total output signal
power will reduce only the output signal power caused by

and not when .
We would therefore like to design the filters such that the

overall total power output is minimized. Let the summation of
the digital filter outputs be given in the Fourier domain by

where is the known measure-
ment in channel is the noise-free value in channel
, and is the noise in channel.
Similar to the known noise case, this problem can be

expressed as

subject to the normalization constraint
. This normalization is included to account for the

fact that the solutions and
are equivalent.

Using a matrix notation and dropping the frequency vari-
ables for simplicity, the optimal weights are given by

where
, and . Details of this solution

are provided in Appendix B. Due to the significant amount
of noise in electron micrographs, it is necessary in practice to
use regularization in estimating (e.g. windowing or

parametric methods [1]). Methods discussed in [16] may be of
particular significance for this problem.

IV. PRACTICAL ISSUES

If there is an area of the frequency spectrum for which
no signal information is obtained, then the projection-based
approach can seriously overamplify the noise. If possible, the
frequency nulls of each channel should be selected such that
they are not close to one another. That is there should not be
a spatial frequency for which

In the case of electron microscopy, the frequency null locations
are “placed” by adjusting the defocus setting of the microscope
prior to recording the image. Careful selection of the focal
settings can produce a collection of images that have no
common frequency nulls. If this selection is not possible, then
a clipping operation may be performed on the restoration filters
prior to their use, which will avoid a boosting of the noise.
Mathematically, this operation can be represented by

else

where the parameteris determined by the level of noise. This
is similar to the regularization of inverse filters as described
in [17]. Interestingly, for the single channel case the
filter with is a commonly used restoration
method in electron microscopy (assuming the only degradation
being corrected is [cf. (10)]. This filter amounts
to simply correcting the phase reversals which occur from the
degradation.

Registration of the images prior to the final summation in
Fig. 2 is a nontrivial problem especially in images as noisy
as those found in electron microscopy. In practice, the images
must be preprocessed to enhance contrast and reduce noise.
These preprocessed images are then used in a routine which
determines a geometric transformation to apply to the images
for registration [18], [19].

The restoration method we have described requires knowl-
edge of the exact frequency response of the channel degra-
dations. In many applications, these degradations must be
estimated from the recorded data [20]–[26]. In the case of elec-
tron microscopy, the noise is such that there may be significant
uncertainty in the estimate of the defocus parameters which
define the channel responses. For the electron microscopy
application, the noise-free Fourier transform of the recorded
values is given by (cf. [5])

(10)

where is the Fourier transform of the input signal and
is the frequency response of

channel , which is to be estimated; here, amplitude contrast
effects have been ignored. The function is a lowpass
function that is produced by source coherence effects. The
term includes phase reversals and frequency nulls,
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Fig. 3. Frequency response of channels.

which are a function of the microscope focal setting. For the
th channel, is given by

where is the operating wavelength of the microscope,
is the spherical aberration of the objective lens, and
is the focal setting of the microscope for theth channel.
The quantity is determined by the voltage setting of the
microscope and is knowna priori. The spherical aberration
is known a priori and is often provided by the microscope
manufacturer. To estimate the shape of

it is necessary to determine the parameters for
from the recorded data.

The first step in estimating the in-
volves computing an estimate of the power spectrum of the
recorded data which we denote by . Since the term

is radially symmetric (assuming minimal astig-
matism), the power spectrum estimate is radially averaged.
Minima of the radially averaged function will occur
near the zero crossings of the function . Due to
the extreme noise and the effects of , it is possible
that only one or two minima are distinguishable. If more nulls
are visible, the defocus is determined by computing a nonlinear
least squares fit between the data and a model which assumes
first-order Markov properties for the signal and the noise. If
only a few minima are visible, then the defocus parameter
is estimated using estimated minima locations. The position
of the minima are usually estimated using a local quadratic
fit. Cepstral based approaches [26], [27] are not useful for
estimating the defocus, since the nulls of are
not equally spaced. In the next section, we provide some
simulation results.

V. SIMULATIONS

Here we perform a three-channel simulation in which a test
image shown in Fig. 4 is degraded by

Fig. 4. Undegraded chirp image.

Fig. 5. Simulated recorded data for channel 1.

with pm, mm, nm,
nm, and nm, where is the

lowpass function produced from source coherence.
is exponentially decaying and depends upon the focus value,
wavelength, and other known microscope parameters. The
radial profile of each channel frequency response is shown
in Fig. 3. A sampling rate of 0.333 nm/pixel was simulated
with 256 256 images. White Gaussian noise was added to
produce an average SNR of 0 dB. Specifically the SNR was
measured as

SNR

where is the variance of the noise-free degraded signal
in channel and is the variance of the noise added
to each channel. Multiple realizations of the restored image
were produced and then ensemble averaged to simulate the
noise reduction achieved by combining multiple specimens.
The noisy degraded outputs of each channel are shown in
Figs. 5–7. The simulated chirp image is used since it demon-
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Fig. 6. Simulated recorded data for channel 2.

Fig. 7. Simulated recorded data for channel 3.

strates the limitations of the restoration methods very well.
Similar results are achieved with other images (e.g., Lena).

For the output space, we selected the separable sinc. In this
case

for

that is the are simply bandlimited
(and conjugated) versions of the degradation filters

. The frequency radial profiles of the projection-
based restoration filters with optimum weights for white noise,

, are shown in Fig. 8. The restoration using the
filters in Fig. 8 is shown in Fig. 9 after the averaging over
15 realizations. The resulting residual is shown in Fig. 10.
Note that the residual in Fig. 10 does not contain any signal
information (i.e., ).

For comparison, we also performed a multichannel Wiener
restoration [2] in which the power spectrum of the input was

Fig. 8. Projection-based restoration filters.

Fig. 9. Projection-based multichannel restoration using optimal weights.

estimated as the periodogram of a prototype image. We put
ourselves in the best possible conditions using the correct
chirp image as the prototype. The optimal Wiener filter was
determined by minimizing the mean square error in each
individual realization. Fig. 11 shows the restoration result
when using the chirp image as the prototype for 0 dB SNR with
averaging over 15 realizations. As far as the high-frequency
details are concerned, the result is obviously much worse as
the one displayed in Fig. 9. This example exacerbates the
signal distortion problem associated with some of the standard
statistical methods.

In this particular simulation setting, we can obviously do
better with a global Wiener solution that also takes into account
the noise reduction achieved in the postprocessing averaging
stage. This global solution is equivalent to the previous one if
we assume that the noise variance in each individual image is
divided by the number of realizations. The restoration results
that are globally optimum in the Wiener sense are presented in
Fig. 12. Not surprisingly, there is a much better filtering of the
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Fig. 10. Residual image for projection based restoration shown in Fig. 9.

Fig. 11. Multichannel Wiener restoration using chirp image as prototype
followed by an averaging over 15 realizations. The Wiener filter is optimized
on an individual basis for each realization.

noise compared to the results in Fig. 9. However, there is still
some attenuation of high-frequency details and it is not entirely
clear which result is the best for a human observer. In addition,
as mentioned in the introduction, it may be very difficult in
practice to design a Wiener filter that is globally optimum,
because the exact noise reduction that will be achieved in the
reconstruction phase of Fig. 1 is not knowna priori. For the
3-D reconstruction of randomly oriented particles, this noise
reduction will depend a lot on the data (which orientations are
available, the type of symmetry, etc.), and on the reconstruc-
tion algorithm which is very complex [28], [29]. Moreover, the
noise reduction is very unlikely to occur in a space-invariant
fashion. Applying a global Wiener solution is also problematic
in the simpler case of correlation averaging because it is neces-
sary to register the individual realizations and to detect outliers
prior to averaging [30]. Last, the Wiener solution is very much
dependent on thea priori knowledge, which is typically not
available in these biological applications [12]. Using prior

Fig. 12. Optimal multichannel Wiener restoration (minimum mean square
error).

Fig. 13. Incorrect global Wiener restoration using Lena image as prototype.

information that is not correct may cause significant distor-
tions. This distortion is illustrated by Fig. 13, which shows
the restoration with a global Wiener filter that uses the Lena
image as the prototype; the modeling of the noise is correct and
accounts for the averaging performed during postprocessing.

Finally, in Fig. 14 we have provided a plot of the square
error between the restoration and the original image versus the
number of realizations combined. From the graph, it is clear
that as the number of realizations increases, the projection
based restoration approaches the optimal Wiener restoration.
In addition, note that if the noise reduction achieved in the
postprocessing stage is not accounted for in the Wiener filter,
then there is little improvement in the restoration as the number
of realizations increases. Last, for the images that we have
shown (averaged over 15 realizations), note that although the
projection-based restoration image has a larger square error
than either Wiener restoration, the projection-based restoration
image preserves all of the signal detail.
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Fig. 14. Square error for projection and Wiener restorations versus number
of realizations averaged.

VI. CONCLUSION

Unlike classical statistical-based methods, the projection
based restoration preserves all of the information about the
original signal when the signal is contained in the recon-
struction space. In such a case, the residual will consist of
noise only. This makes the method useful for applications
such as electron microscopy in which noise is reduced in
a postprocessing stage and for which there is littlea priori
information about the original signal or the amount of noise
reduction that will be obtained in the postprocessing stage.

APPENDIX A

We will drop the frequency indices for clarity. First consider
a set of filters of the form

We wish to show that a filter expressed in this form will always
satisfy the projection constraint given by (5), which in the
Fourier domain becomes

Substituting the into the above expression
immediately shows that the set of filters will produce a system
which is a projection operator.

Next, we wish to show that any arbitrary set of filters
which satisfy the projection constraint

can always be expressed in the form

(A1)

The problem is to find a set of weights such
that the above relationship is true. A solution is to select the
weights

Substituting this solution into (A-1) leads to

Therefore, the filters can be expressed in the
form given in (A1).

APPENDIX B

Here we drop the frequency indices for clarity. The problem
is to minimize

with respect to subject to the normalization
constraint

where . Incorporating the constraint into the
cost function, differentiating with respect to and setting the
constant produces

(B1)

where is the Lagrange multiplier associated with the con-
straint and . Multiplying both sides of
the above equation by , summing over the index , and
incorporating the constraint provides a value for.

This value is substituted back into (B1), and with algebraic
manipulations we obtain the following matrix equation:

where
. Matrix is not guaranteed to be of full

rank. If the matrix does have full rank, then the solution for
is

If has rank , then using the pseudoinverse
in place of provides the solution

for where is an eigendecompo-
sition of is a diagonal matrix with diagonal entries

, and is a diagonal matrix with
diagonal entries .
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