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Optimal Nonnegative Color Scanning Filters

Gaurav Sharma, H. Joel Trussell, and Michael J. Vrhel

Abstract—In this correspondence, the problem of designing color
scanning filters for multi-illuminant color recording is considered. The
filter transmittances are determined from a minimum-mean-squared
orthogonal tristimulus error criterion that minimizes the color error in
estimates obtained from noisy recorded data. Nonnegativity constraints
essential for physical realizability are imposed on the filter transmittances.
In order to demonstrate the significant improvements obtained, the
resulting filters are compared with suboptimal filters reported in earlier
literature.

Index Terms—Color, colorimetry, color filter design, scanning.

I. INTRODUCTION

It is well known that the color of an object is dependent upon
the illuminant under which it is viewed. In certain applications,
the color of an object under several different viewing illuminants
must be estimated from measurements obtained with a single device.
Examples of such applications include paint and textile industries,
where it is desirable to monitor and minimize the color variation of
paint/dye lots under common home, office, and daylight illumination,
and computer graphics simulations, where a single scene may need
to be rendered under several different lighting conditions.

The problem of accurately recovering color information under
multiple viewing illuminants can be posed as a color-filter design
problem. Reference [1] describes a method of computing transmit-
tances of filters that minimized the minimum-mean-squared tris-
timulus error. The design of color recording filters for a device
capable of both reflective and emissive measurements has also been
described recently by Wolskiet al. [2]. Their method minimizes
mean-squared error (MSE) in a linearized perceptually uniform color
space. Regularization terms are used to enforce smoothness on the
designed transmittances and to provide robustness in the presence
of noise and component variations in the filters. Since noise was not
explicitly included in the analysis, the weighting of the regularization
term was determined empirically.

Reference [3] addresses the specific problem of designing color
filters that account for the presence of noise in the recording process.
The approach used a minimum-mean-squared orthogonal-tristimulus
error formulation. Closed-form solutions for optimal scanning filters
at various signal-to-noise ratios (SNR’s) were determined, and the
relation of the number of filters to the color error was examined.
However, the closed-form solutions were not constrained to be
nonnegative, which is necessary for physical feasibility. A constrained
version of the problem requiring the filters to be nonnegative was also
formulated, but since the problem had a nonlinear power constraint,
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only a suboptimal solution to that problem was obtained based on the
unconstrained solution. In this correspondence, the same constrained
problem is considered. Through a simple modification, the problem
is transformed to one having only nonnegativity constraints. A
numerical optimization scheme is utilized to determine the optimal
solution. Results indicate significant improvement over the previous
suboptimal solution.

II. PROBLEM FORMULATION

For completeness, the problem formulation from [3] will be briefly
summarized. Typically, color scanners filter the reflected light from
the scanned object into spectral bands and record the light energy in
each band using radiation detectors. The spectra will be represented
here byN -component vectors, consisting of equispaced samples in
the visible region from 400 to 700 nm. If aK channel scanner is
used, the measurement of an object whose reflectance is specified by
theN -vectorr can be algebraically represented [3], [4] as

ts =M
T
Lsr+ = G

T
r+ (1)

where ts is a K� 1 vector of scanner measurements,Ls is the
N � N diagonal matrix with samples of the scanner-illuminant
spectrum along the diagonal, is the K� 1 measurement noise
vector,G = LsM, andM = [m1;m2; � � � ;mK ] is the N � K

matrix of scanner filter transmittances, wheremi represents the
spectral transmittance of theith filter (including detector sensitivity
and the transmittance of the scanner optical path).

The color of an object, under a given viewing illuminant, is
specified by its CIE XYZ tristimulus value [5]. If there areJ viewing
illuminants, in a manner analogous to the scanner measurements, the
tristimuli of the object with spectral reflectance,r, can be written
[4], [3] as

ti = A
T
Lir = A

T

L r; i = 1; 2; � � � J (2)

whereti is the 3� 1 vector of CIE XYZ tristimulus values under
the ith viewing-illuminant,A is the N� 3 matrix of CIE XYZ
color-matching functions [5],Li is theN �N diagonal matrix with
samples of theith viewing-illuminant spectrum along the diagonal,
andAL = LiA.

Colorimetric information about the object is determined from
the scanner measurements by estimating the tristimulus values. The
scanning-filter design problem can be formulated as a problem of min-
imizing the MSE in estimated CIE tristimuli. Such a procedure suffers
from two drawbacks: the CIE XYZ tristimulus values are highly
correlated, and significant magnitude differences can exist between
different illuminants. Hence, as in [3], each of the illuminant color-
matching matrices,fLiAg

J

i=1, is orthonormalized to obtainfOig
J

i=1,
such thatOi has orthonormal columns and a range space identical
to that of LiA. The vectorOT

i r then represents a tristimulus in
an orthogonal tristimulus space. Note that the magnitude differences
between illuminants could also be eliminated through simple scaling.
However, the orthonormalization procedure is preferred because, in
comparison with mean-squared errors in the highly correlated CIE
XYZ space, those in the orthonormalized tristimulus space correlate
better with perceptual measures of color difference [6].

The problem of scanner design is now formulated as an optimiza-
tion problem, where the color filter/recording illuminant matrix,G, is
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chosen so as to minimize the MSE in the orthogonal tristimulus space

� =

K

i=1


2
iE Pi(ts)�O

T
i r

2
; (3)

wherePi(�) is an illumination color-correction transformation for the
ith illuminant, which estimates the tristimuliOT

i r from the scanner
measurementsts; the 2i are used to provide a weighting for the
cost of color errors under the various illuminants; andE denotes
the expectation operator (taken over the reflectance spectra and the
additive noise).

If the noise is assumed to be uncorrelated with the signalG
T
r,

then it can be seen that the linear minimum MSE (LMMSE) estimator
of the orthogonal tristimuli is

Pi(ts) = O
T
i KrG[G

T
KrG+K ]

�1

� [ts � ��G
T
�r] +O

T
i �r (4)

whereKr is the covariance matrix of the reflectance spectra,K is
the covariance matrix of the noise,�r is the mean of the reflectance
spectra, and� is the mean of the noise [7]. In this work, only linear
illumination color-correction transformations(Pi(�)) are considered.
Alternate higher order polynomial transformations are not explored
due to the mathematical intractability of the resulting problem, and
because higher order polynomials offer insignificant gains over a
linear transformation when the input is not constrained to a restricted
class [8].

Substituting (4) in (3), it can be readily seen that the LMMSE can
be written as�LMMSE = �� �(G), where� = tr(SSTKr) and

�(G) = tr(SS
T
KrG[G

T
KrG+K ]

�1
G

T
Kr) (5)

where S = [1O1; 2O2; � � � ; JOJ ] and tr(�) denotes the trace
operator. Since the sensor measurements are performed independently
on theK channels, it will be assumed thatK = �2I, where�2

denotes the variance of the noise in the individual measurement
channels.

It is clear that�LMMSE is minimized if the filter/illuminant matrix
G is chosen so as to maximize�(G). In practice, the recording
device is subject to additional limitations of illuminant intensity and
integration time. In order to incorporate these, it is assumed, as in
[3], that the expectation of the total signal power is constrained to be
a finite positive number,�. Mathematically, this assumption is stated
as EfkGT

rk2g = �.
Note that with this constraint on the signal power, the problem of

selecting the optimal nonnegative filter/illuminant matrix,G, can be
stated as [3]

max
G

�(G) subject toGT � 0; tr(G
T
KrG) = � (6)

where� = � � kG�rk2.
This problem was formulated in [3], where it was stated that

the problem is difficult to solve due to the nonlinear signal power
constraint. A suboptimal solution was determined in [3] through a
two-step process. First, optimal filter sets that were not constrained
to be nonnegative were determined analytically, and then nonneg-
ative filters that approximate the unconstrained optimal filters were
obtained through a numerical optimization procedure. In the next
section, it will be shown that a simple modification of the problem
eliminates the nonlinear constraint, allowing the problem to be solved
directly.

III. CONSTRAINT SIMPLIFICATION

In practice, the parameters,� and �2, in the above optimization
problem are not known in absolute terms. Instead, their ratio�=�2,

defined as the SNR, is usually estimated from a knowledge of the de-
tector noise characteristics and the device quantization requirements.
Therefore, problem (6) is more completely stated as

max
G

�(G) subject toGT � 0;

tr(G
T
KrG) = �;

�

�2
= � (7)

where� is the SNR.
By eliminating�2, (7) can be rewritten as

max
G

f(G)

� tr SS
T
KrG G

T
KrG+

tr(GT
KrG)

�
I

�1

G
T
Kr (8)

subject toGT � 0; tr(GT
KrG) = �.

Note that the objective function is invariant to a scaling ofG.
Hence, if the solution to this problem is denoted asGopt(�;�),
then the solution to the corresponding problem where the signal
power is scaled by a positive constant� is simplyGopt(��;�) =p
�Gopt(�;�). Hence, given a solution to the problem

max
G

f(G) subject toGT � 0 (9)

the solution to problem (7) can be immediately found by scaling with
a positive scalar to satisfy the constrainttr(GT

KrG) = �.
Since (9) involves only a nonnegativity constraint, it is more readily

handled by numerical optimization programs than the optimization
in (6), which involved an additional nonlinear constraint. Even a
small amount of noise ensures that the function,f(�), is differentiable
everywhere with gradient@f

@G
, given [9] by

1

2

@f

@G
= KrSS

T
KrG G

T
KrG+

tr(GT
KrG)

�
I

�1

+KrG G
T
KrG+

tr(GT
KrG)

�
I

�1

�G
T
KrSS

T
KrG G

T
KrG+

tr(GT
KrG)

�
I

�1

+
1

�
tr KrSS

T
KrG G

T
KrG

+
tr(GT

KrG)

�
I

�2

KrG: (10)

If the covariance matrix of the reflectance spectra and the parame-
ters of the scanning illuminant inS are known, the expressions for the
function and the gradient can be readily used in gradient-projection
optimization schemes [10] to determine the (locally) optimal solution
to (9).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The multi-illuminant color recording problem simulated in [3] was
used to evaluate the usefulness of the new procedure (which deter-
mines the optimal solution to (6)) in comparison to the suboptimal
solution proposed in [3]. A sampling width of 10 nm was used,
which resulted inN = 31 samples between 400 and 700 nm. A
reflectance spectra ensemble, consisting of 343 spectral reflectances
from a color copier, was used to determine the spectral covariance,
Kr.1 The CIE incandescent illuminant A, CIE daylight illuminant
D65, and CIE fluorescent illuminant F2, were used as the viewing
illuminants, with unity weighting factors(i), to determine the matrix

1Results for other ensembles of reflectance spectra were similar to those of
the copier data set.
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Fig. 1. Performance comparison of optimal and suboptimal filter sets.

S. Using a commercial scientific-optimization routine [11] based on
a modified-Newton method with gradient-projection, sets of three to
seven color filters were calculated for SNR’s of 30, 35, 40, 45, and
50 dB.

Some comments about the numerical behavior of the optimization
problem (9) would be appropriate here. As mentioned earlier the
objective function,f(G), is invariant under scalar transformations
of G. Therefore, the problem does not have a unique solution, and
every positive scalar multiple of a maximizer is also a maximizer.
This leads to undesirable scaling problems in the vicinity ofG = 0.
For numerical stability and improved convergence, it is desirable
to have a (locally) unique solution. Therefore, one of the elements
of G was constrained to be unity. For most cases, the suboptimal
solutions from [3] were used as initial starting points for the iterative
optimization routines and the maximum element in the initialization
was constrained to be unity. Experimentation with alternate initial
points revealed that the solution was not unduly sensitive to the
initialization in the cases examined, and the unity constraint did not
create any problem as long as it was applied to an arbitrary element
in the green region of the spectrum (approx. 500 to 550 nm). The
algorithm converged fairly fast, requiring under 20 iterations in most
cases.

The matrixG in (1) represents the combination of the recording-
illuminant and the transmittances/sensitivities of the filters and other
components in the scanner. For brevity, in the following discussion,
it will be referred to as thescanning filter-setand its elements will be
calledfilter transmittances. The solution to (9) obtained by the above
procedure will therefore be alluded to as theoptimal (nonnegative)
filter-set, and the nonnegative solution from [3] will be called the
suboptimal filter-set.

Using simulations, the recording accuracy of the optimal filter-sets
obtained from the above procedure was compared with the accuracy
of the suboptimal filter-sets of [3]. In order to perform the comparison,
for each filter-set (optimal/suboptimal and having between three and
seven filters), a noisy recording of the copier data-set used in [3]
was simulated using the model of (1), where white Gaussian noise,
with variance determined by the SNR, was used for. The CIE
tristimulus vectors of the spectral reflectance samples under the three
viewing illuminants were estimated from the recorded data using an
LMMSE estimator [(4) withOi replaced byAL ]. True tristimuli
were also calculated using (2). In order to calculate color errors
in perceptually relevant units, the tristimuli were converted to CIE

(a)

(b)

Fig. 2. (a) Optimal and (b) suboptimal four-filter sets at 30 dB SNR.

L�a�b� space [5], [12] and the�E�

ab error (Euclidean distance in
L�a�b� space) was computed for each estimated tristimulus. For
each filter set, average�E�

ab errors were computed over the copier
reflectance-ensemble and the viewing illuminants. The average�E�

ab

errors for the optimal and the suboptimal filter sets are compared
in Fig. 1, for SNR’s of 30, 40, and 50 dB. The number of filters
is represented along the abscissa and the average�E�

ab errors are
plotted along the ordinate for different filter-sets, with the crosses
(�) representing averages for the suboptimal filters from [3], and the
circles (�) representing the averages for the optimal filters obtained
by the aforementioned procedure. The number of filters is integral,
but lines joining the points have been plotted to facilitate comparison
and comments.

Several interesting observations can be made from Fig. 1. First
observe that the optimal filters perform consistently better than the
suboptimal filters. Given the nonlinear relation of the CIEL�a�b�

space to the orthogonal-tristimulus space in which the optimal filters
are defined, this improvement does not directly follow from the
“optimality.” The reduction in error is significant for all filter-
sets, but the largest improvements in average�E�

ab performance
are at low SNR’s and for filter sets with large number of filters.
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TABLE I
�E�

ab
ERROR STATISTICS FOR OPTIMAL NONNEGATIVE FILTER SETS

Intuitively, one expects the average error to monotonically decrease
as additional filters are added at a given SNR. The optimal filters
follow this trend, but due to the additional constraints on the
suboptimal filters, they often show an increase in average�E�

ab

error with increase in the number of filters. These facts indicate
that the additional constraints imposed on the filters in defining the
suboptimal solution were inappropriate. One may also note here
that in the absence of noise,f(G) is invariant under nonsingular
transformations ofG [13]. Therefore, in the absence of noise,
nonnegative filters can be obtained by a nonsingular transformation
of the optimal unconstrained filters [14]. Since the suboptimal filters
were initialized using such nonsingular transformations, this fact
explains the (relative) improvement in performance of the suboptimal
filter-sets at high SNR’s.

A more complete summary of the�E�

ab error statistics for the
optimal filters appears in Table I. For each SNR, viewing-illuminant,
and filter-set, the�E�

ab errors in the color-estimates of the 343 copier
reflectances (from the simulated noisy scanner measurements using
the optimal filters) were used to determine and tabulate the following:
�Eavg, the average�E�

ab value of the set;�Emax, the maximum
�E�

ab in the set;�E�

ab � 3, the number of errors with a�E�

ab

greater than three. The number of�E�

ab values greater than three are
given since such values are perceptually noticeable by the average
observer.

A comparison of Table I with the corresponding table for the
suboptimal nonnegative filters presented in [3] reinforces the con-
clusions drawn from the graphs in Fig. 1. In almost all comparisons,

the optimal nonnegative filters offer significant improvements over
their suboptimal counterparts, with the largest improvements for low
SNR’s and for filter sets with larger number of filters. Both the graph
and the table indicate that at all simulated SNR’s, going from three to
four filters offers the most significant decrease in the average�E�

ab

error, and the improvement obtained upon using more than four filters
is incremental. Hence, it is desirable to use a four-channel scanner and
fourtuples for obtaining multi-illuminant color information. Vrhelet
al. [3] first arrived at this conclusion, which is strengthened by these
new results.

In addition to the feasibility requirement embodied in the nonnega-
tivity constraint, it is desirable that the filter-setG be ready fabricable
for use in a scanning device. The manufacturability of the suboptimal
four-filter set from [3], using dichroic materials, was examined in
[15], and fairly close approximations to the suboptimal filter-sets
were deemed producible. A similar study has not been performed
for the optimal filter-sets determined in this work. However, it is
unlikely that there will be significant differences in manufacturability
between the optimal and the suboptimal filters. This claim is validated
by the details of the fabrication procedure described in [15] and by
the comparison of the optimal and suboptimal nonnegative four-filter
sets at 30 dB SNR shown in Fig. 2.

V. CONCLUSION

Optimal nonnegative color-scanning filters (for multi-illuminant
color correction) designed in this paper were shown to offer signif-
icant improvements in color recording accuracy in comparison with
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a suboptimal scheme reported in earlier literature. The simulation re-
sults further reinforced the conclusion in [3] that for multi-illuminant
color-recording the use of fourtuples is desirable, instead of the
tristimuli currently used.
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