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Filter Considerations in Color Correction

Michael J. Vrhel, Member, IEEE, and H. Joel Trussell, Fellow, IEEE

Abstract—The quality of color correction is dependent on the
filters used to scan the image. This paper introduces a method
of selecting the color filters using a priori information about the
viewing illuminants. Color correction results using the derived
filters are compared with color correction results using filters that
are optimal for individual viewing and recording illuminants. The
comparison is performed using the CIE AEr-,«,+ perceptual
color difference measure. Applications of this work are found in
the design of scanners, copiers, and television systems.

L. INTRODUCTION

NDER optimal viewing conditions, it is estimated that

the human eye can distinguish 10 million different colors
[36]. It is therefore possible, through the use of color, to
convey a tremendous amount of information about objects
in an image. In many situations, color may be indispensable
in interpreting or judging an image. Examples include the
following: medical diagnosis [11], the determination of food
freshness [37], remote sensing [18], retail catalogs [23], and
textile production [24].

In the first step of reproducing a color image, the original
image is recorded by measuring the reflected or transmitted
energy of the image in a number of different wavelength
bands. The illuminant under which an image is recorded—the
recording illuminant—will affect the recorded colors. In print-
ing applications, the reproduction will usually be viewed and
compared with the original image under an illuminant that
is different from the recording illuminant. After the original
image is recorded, the data obtained is corrected to compensate
for the effects of the recording illuminant, viewing illuminants,
and inadequacies in the color filters.

Ideally, the corrected data provides a reproduction device
with the information necessary to produce a color match
with the original image when the images are compared under
a particular viewing illuminant. If any of the colors to be
reproduced are outside the color gamut of the display device,
then a gamut color correction of the iltuminant corrected data
is also necessary. The color gamut mapping problem is distinct
from the illuminant color correction problem. Illuminant color
correction attempts to estimate the exact color the device
should reproduce. Color gamut correction involves mapping
the colors the reproduction device should ideally reproduce
to colors inside the display gamut of the reproduction device
[28]. Only the illumination color correction problem will be
investigated in this paper.
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A color copier is an example of a device with a recording
illuminant that is different from standard viewing illuminants.
For each color filter in the copier, a scan of the image is
performed. The recorded data is a function of the recording
illuminant, the color filters, the system noise, the sensor re-
sponse, and the image being recorded. A color copier produces
an image by placing varying densities of cyan, magenta,
yellow, and black toner onto paper. From the data obtained in
the recording process, the copier computes the toner densities
necessary to obtain a color match with the original image.
The color match will be dependent on the illuminant under
which the images are compared. For each viewing illuminant,
a different transformation of the recorded data is necessary
to obtain a color match. To obtain high-quality color matches
between the original image and the reproduction, the recorded
data should contain colorimetric information about the original
image under the viewing illuminants. A priori information
about these viewing illuminants can be incorporated into the
design of color filters and recording illuminants to reduce color
differences between the reproduction and the original image.

In this paper, three approaches of selecting color filters and
recording illuminants for color correction are introduced. The
first approach uses only knowledge about the radiant spectra
of the viewing illuminants. A set of filters that minimizes
the maximum square error in a normalized tristimulus space
is selected. The second and third approaches use knowledge
about the radiant spectra of the viewing illuminants along
with statistical information about the reflectance spectra in
the image to be recorded. In the second approach, a set
of color filters that minimizes the mean square error in a
normalized tristimulus space is analytically calculated. In the
third approach, a numerical method is used to calculate a set
of filters that minimizes a perceptual color error.

II. MATHEMATICAL BACKGROUND

Vector space approaches to color systems have been ef-
fectively used to solve problems in color systems [5]-[7],
[12], [19], [30], [32], [33]. In a vector space approach, the
visible spectrum (400-700 nm) is sampled at N wavelengths.
The visible spectrum should be sampled finely enough such
that the integration occurring in the recording process can be
accurately approximated numerically. The spectral reflectance
or spectral transmittance of an object can be represented by
an N element vector f. If the spectral power distribution of
the illumination is written as an N x N diagonal matrix L,
then the radiant power reflected or transmitted by the object
is represented by the vector Lf.

The recording of a color stimulus is performed by measuring
the intensity of filtered light. If n; represents the transmittance
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of filter 4, then the recording process can be modeled as

c=NTL.f+u Q)
where N = [n;, ny, ... np), L, is the recording illuminant,
c is the P-stimulus value recorded for spectral reflectance f
under illuminant L., and u is additive noise. The ith element
of ¢ approximates the integrated power that passes through
the 4th color filter. Three color filters are often used, in which
case, c is referred to as a tristimulus value. In practice, the
sensor that performs the integration of the filtered light will
be nonlinear and have a characteristic spectral sensitivity [2],
[10]. The spectral sensitivity response of the sensors can be
combined with the transmittance of the color filters to give an
overall system spectral sensitivity. For this work, it will be
assumed that the brightness of the image and illuminant are
such that the device is operating in its linear region.

There are color imaging devices that use a number of
recording illuminants in place of color filters to achieve color
separation. These devices can also be modeled using (1),
where the columns of matrix IN become the spectral power
distributions of the recording illuminants, and L, = I. We will
assume for readability that the imaging device is constructed
to have a single illuminant and a number of color filters. The
results of this work can be easily adapted to the design of a
device with multiple recording illuminants.

The human eye contains four types of sensors consisting
of three types of cones, which are used for color vision, and
the rods, which are used for low luminance vision. Since this
paper concerns color reproduction, it will be assumed that the
luminance level is sufficiently high such that only the cone
responses need to be considered (see pp. 544-547 of [35] and
p- 87 of [15]. The response of the eye to a radiant spectrum
Lf can be represented by

r = CTLf o)
where the matrix C = [p,~y, §] contains the sampled spectral
sensitivities of the eye sensors. It can be shown that the
response of the human visual system to a radiant spectrum
is uniquely determined by the orthogonal projection of that
radiant spectrum onto the range space of the matrix C [30].
For this reason, the range space of the matrix C is defined
as the human visual subspace (HVSS). The HVSS can be
defined by any set of three vectors that are a nonsingular linear
transformation of the column vectors of the matrix C [30].

To create a standard, the Commission Internationale de
I’Eclairage (CIE) calculated a transformation of C, producing
a set of nonnegative vectors that are referred to as the CIE
XYZ color matching functions. The functions are plotted in
Fig. 1. If the sampled CIE XYZ color matching functions are
contained in the columns of matrix A = [a;, ay, a3), then two
radiant spectra g and h visually match if and only if their
tristimulus values are equal

ATg=ATh. ©)
Illumination color correction transforms the recorded data to
obtain the tristimulus values of the original image under a
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Fig. 1. CIE XY Z color matching functions.

particular illuminant. Mathematically, color correction can be
described by

P(c) = ATL,f (C)]

where ¢ = NTL,f is the recorded data, L, is the viewing
illuminant, and P is defined as the ideal color correction
transformation. Due to the drastic reduction of information
in the recording process, equality can be achieved only under
conditions that are rarely met in physical situations.

A linear minimum mean square error (LMMSE) approach
to color correction involves the minimization of

em = B{|[t - £} ®)

where t = ATL,f and the estimate © is a linear function of
the recorded data c

t=Wc+z . 6)

The minimization of ¢,, is performed with respect to W and
z. If the recorded P-stimulus value ¢ is given by (1) where
u is additive noise uncorrelated with the reflectance spectra,
then the LMMSE estimate is

t=ATL,K/L,N[N"L,K/L,N+K,] ![c - © — NTL, 7]
+ ATL,f (7

where
K covariance matrix of the reflectance spectra
K, covariance matrix of the noise
f mean of the reflectance spectra

u mean of the noise
(see p. 385 of [21]).

The mean square error between the estimated tristimulus
value and the actual tristimulus value is not the ideal cost
function to minimize since the sensitivity of the eye is not
uniform in color spaces which are linear transformations of the
HVSS. The minimization of cost functions in color spaces that
are more uniform than the CIE tristimulus space are difficult to
implement because of the nonlinear transformations involved.
An analytical approach is not possible when minimizing with
respect to a color metric such as CIE AFEjp.,.5-. Large
to intermediate scale nonlinear programming methods are
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required. An advantage to the LMMSE approach is that the
transformation is easily updated for changes in viewing and
recording illuminants. A method that requires a numerical
solution is not easily updated for changes in illuminations.

III. SELECTION OF COLOR FILTER SUBSPACES

In many applications, it is desirable to obtain colorimetric
information about an object for several viewing illuminants
from measurement with a single device. In addition to the
color copier example, applications where this would be useful
include the textiles industry, in which color variation of dye
lots for several illuminants should be closely monitored, and
the printing industry, in which accurate color rendition of a
product in a retail catalog is important for several illuminants.

There is no discussion in the literature on optimizing
color filter subspaces to obtain colorimetric information of
a scene under several viewing illuminants. Previous work
has recommended selecting P filters that span the same
space as the first P principal component vectors of the
spectral reflectance covariance matrix [4]. If the goal is spectral
reflectance discrimination, then this is a reasonable approach.
If the goal is color reproduction, then it is necessary to consider
the HVSS in the selection of the filters.

In works that consider the HVSS, the approach has been to
design the color scanner such that the filter set spans the HVSS
[29], [1]. This is reasonable if the original image and repro-
duction are to be compared only under a spectrally uniform
illumination. If colorimetric information for several viewing
illuminants is desired, then filters that span the HVSS do not
perform well. The performance of the filters is demonstrated
and discussed in Section V.

In remote sensing applications, more than three spectral
bands is common. The goal in remote sensing is usually
spectral discrimination. The use of more than three filters in
the recording process of color images has not been widely
discussed in the literature. Kollarits and Gibbon [16] tested the
use of five filters for a television application. They achieved
a significant improvement in color errors compared with a
typical three-filter camera. No optimization was performed
with respect to selecting the five filters, and tristimulus values
for multiple viewing illuminants were not estimated from the
recorded data. In another application, a seven-filter scanner
was used to archive art work [20].

It is clear that the color filters used in recording an original
image affect the accuracy of any color correction method. In
this section, we will pose the problem of obtaining a set of P
color filters that improves the accuracy of the color correction
method. The HVSS and a particular viewing illuminant L,
define a 3-D subspace of ®%. This 3-D subspace is the range
space of the matrix L, A. If the spectral reflectances in the
image are assumed to vary arbitrarily, then, for accurate image
reproduction, the color filters/recording illuminant should span
the same space as the HVSS under the viewing illuminant.
Mathematically, this can be expressed as

R(L,A) = R(L,N). ®)
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If the color filters/recording illuminant span the same space as
the HVSS under the viewing illuminant, then, in the absence of
noise, the desired data can be calculated from the recorded data
exactly by a linear transformation. To simplify the notation,
the span of the color filters/recording illuminant, which is the
spectral sensitivity of the device, will be referred to as the
span of the color filters.

Suppose there are two viewing illuminants under which
color matches with an original image are desired. In other
words, one reproduction should match the original under
illuminant L,,, and a different reproduction should match the
original underilluminant L,,. Both reproductions are to be
obtained from the same recorded data. The HVSS combined
with the two viewing illuminants defines a subspace of RY.
The subspace is the range space of the matrix [L, A Ly, A]
and is referred to as the human visual illuminant subspace
(HVISS). For the two viewing illuminants case, the dimension
of the HVISS could be as large as six. Ideally, the color filters
should be selected to span this subspace since the goal is to
obtain colorimetric information about the original image under
the two viewing illuminants.

This problem can be generalized to K viewing illuminants
and P color filters. In this case, the HVSS and the K viewing
illuminants define a HVISS with a dimension that could be
as large as 3K. If the number of color filters is larger or
equal to the dimension of the HVISS, then the filters should
be constructed such that the HVISS is in the span of the filters.
In this case, the problem becomes one of filter realizability. If
the number of color filters is less than the dimension of the
HVISS, then the filters cannot span the HVISS. In this case,
it is necessary to develop a cost function based on the color
correction error, which can be minimized with respect to the
color filters.

There is often a priori information about the image spectral
reflectances that can be used in the design of the color
filters. This is especially true if the image to be recorded
was produced by a small number of colorants, such as prints
produced by four color processes. In applications such as
television or still video, a priori information about the spectral
reflectances may not be available. In this case, an approach
of selecting the filter space using only information about the
viewing illuminants and the HVSS is useful. Both of these
approaches will be addressed in this paper.

A. Approach Using Only Information About llluminant Spectra

In the case of limited information about the reflectance
spectra, the problem of finding a set of optimal filters can be
formulated using a min/max method. In the min/max approach,
the error to be minimized is

K
e =Max) 77|Off - OFf|?
i=1

®

where the reflectance spectra are assumed arbitrary except that
If]|> < 1. The N x 3-dimensional matrices O; i=1...K
are constructed to have orthonormal columns with the range
space of O; the same as the range space of L,, A, where
L,, ¢ =1,...,K are the K illuminants under which the
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reproduction may be viewed. The orthonormalization is per-
formed to remove weightings caused by magnitude differences
in the illuminants. The 7 are used to provide a weighting for
the cost of color errors under the various viewing illuminants.
Use of the weighting coefficients will be discussed later. The
spectral reflectance estimated from the recorded data is f. Note
that the estimated spectral reflectance f is a function of the
color filters since it is calculated from the recorded data.
The optimal filters will depend on the estimation method
used to obtain f from the recorded data. To simplify notation,
the color filters N and the recording illuminant L, are com-
bined into a single matrix GT = NTL,.. If the recorded data
is given by ¢ = NTL, f, then a maximum likelihood estimate
(MLE) of the spectral reflectance f is
f=(@Mle+I-(@N1aT)d (10)
where (G”)1 is the Moore—Penrose generalized inverse of the
matrix GT = NTL, and d € ®V.
Clearly, there is no unique MLE for f. Equation (10) can
be rewritten as
f=@GNtet+v (11)
where v is any vector in the null space of the matrix N”L,.
A priori knowledge about the reflectance spectra can be
used to select v to improve the estimate of f. For example,
reflectance spectra are physically bounded between 0 and 1
and are usually smoothly varying functions of wavelength.,
The vector (GT)“C is not guaranteed to be bounded between
0 and 1 nor is it necessarily a smooth function of wavelength.
Incorporating these physical constraints into the estimator
would complicate the estimation process since set theoretic
estimation or constrained quadratic programming becomes
necessary. These methods are not realistic for most desktop
color imaging applications. For this work, f will refer to
the MLE that uses only the data obtained from the color
filters. In this case, it is common to select f = (GT)fc—the
minimum norm solution—which is the orthogonal projection
of the spectral reflectance f onto the range space of the matrix
G, ie.

f=Pref . (12)

In Appendix A, the P optimal min/max filters are shown to
be any set of filters that, with the recording illuminant, span
the range space of the matrix B, = [by,by,..., bp], where
the vectors b; i = 1,... P are the P N-clement vectors
associated with the P largest singular values of the matrix
S = [1101,7%20;,... 7xOk].

B. Approaches Using Information About
Reflectance and Illuminant Spectra

In this section, methods of selecting color filter spaces that
make use of information about the reflectance spectra in the
original image are introduced. The first method uses a mean
square error cost function in a normalized tristimulus space.
An analytical solution for the optimal filters is obtained. The
second method uses numerical methods to minimize a cost
function in a perceptual color space.
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1) Mean Square Error in Normalized Tristimulus Space: The
cost function to be minimized is the sum of the mean square
errors occurring in each of the HVISS’s and can be written as

K
em = »_ 12 E{||OTf ~ OTF)?} (13)
i=1
where the N x 3-dimensional matrices O; i = 1...K and
v} are as defined in Section III-A.
Since statistical information about the reflectance spectra is

available, the estimate f is a LMMSE estimate, in which case

f = K/L,NIN"L,K/L.N + K,][c — i ~ NTL,f| +f
(14)
where Ky is the covariance matrix of the reflectance spectra.
From the results in Appendix B, the set of P optimal filters
in the absence of noise consist of any set of filters that,
when combined with the recording illuminant, span the same
space as the matrix U, = [ug, uy, ..., up], where the vectors
u; ¢=1,... Parethe P N-clement vectors associated with
the P largest eigenvalues of the matrix SSTK . As in Section
HI-A, S = [7101,’}'202, e ’)’KOK].
2)Approaches Using a Perceptual Color Error: As previ-
ously discussed, it may be more appropriate to select the
filters such that a perceptual measure of color difference is
minimized. If the transformation from the CIE XYZ tristimulus
space to a perceptual color space is denoted by the function
F[-], then the problem can be formulated as follows: Find
the filters G and the affine transformations defined by W;, z;
© = 1,... K such that one of the following cost functions is
minimized:
K
€pmse = 3 ¥ E{|F[ATL, f] - FIW,GTf + 2,]}
i=1
(15)

K
Comaxt = D9 L IIFIATL, £] - FIW.GTE + 2|

v ‘feRr

(16)
max
pmax2 = rer | FIATL,f] — FIW,GTf + 2|
i=1, ...K
(17)

where again GTf denotes the recorded data, R denotes the
ensemble of reflectance spectra from which the original image
is derived, and || - || denotes a measure of color difference in
the perceptual color space.

Transformations from the CIE XYZ color space to proposed
perceptually uniform color spaces are nonlinear. The nonlin-
earity makes it difficult to derive an analytical solution to the
above minimization problems. The CIE 1976 L*a*b* color
space is an approximately uniform color space (see p. 166 of

[35]). The transformation from CIE XYZ to L*a*b* is
F(t) = X[t§, 15,517 - [16,0,0]7 (18)

where

(19)
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where [X,,,Y,,Z,] are the CIE tristimulus values of the
reference reflectance under the reference illuminant, and t =
[t1,t2,t3)T is a CIE XYZ tristimulus value. The above trans-
formation is used for tristimulus values satisfying the con-
straint %;,1—3?:, %’:] > [0.008856, 0.008856, 0.008856]. A
minor modification is necessary for those tristimulus values
that do not satisfy this constraint (see p- 167 of [35]). In
the L*a*b* color space, the color difference measure between
two colors is their Euclidean distance. This color difference
measure is referred to as a AFE«,-5 value.

Minimization of (15), (16), or (17) can be performed using
a standard unconstrained numerical optimization method [17],
[8]. Depending on the transformation to the perceptual color
space, it may be difficult to calculated the gradient directly, and
it may be necessary to use a finite difference approximation.

IV. PHYSICAL CONSTRAINTS AND SENSITIVITY

The previous section introduced methods to specify filter
spaces for obtaining colorimetric information about a scene
under a number of viewing illuminants. A method of spanning
the filter subspace with a set of physical filters is beyond the
planned scope of this paper. A method to produce such filters
is presented in [31]. However, it is of interest to verify that
a realizable set exists.

Clearly, if the space to be spanned cannot be spanned by a
set of nonnegative vectors, then the space cannot be spanned
by a set of realizable filters. A sufficient condition for the
existence of a set of nonnegative vectors that span a particular
subspace is the existence of a single all positive vector in
the subspace. Therefore, if an all-positive vector is found to
lie in the desired filter subspace, then that filter subspace can
be spanned by a set of nonnegative vectors. Two different
methods of finding nonnegative filters will be discussed. A
method of selecting a set of nonnegative filters with minimum
sensitivity to errors in the color filters is also presented.

A. Set Theoretic Approach

Finding a set of nonnegative vectors that span a particular
space is easily formulated using a set theoretic approach. If
there are P filters, then the problem is to find P linearly
independent vectors in the intersection of the following sets:

Co={x]| 220} (20)
which is the set of nonnegative vectors, and
Co={ x |3y suchthatx=Gy } 1)

which is the set of vectors in the range space of matrix Gy p,
where the range space of G defines the optimal filter subspace.

Projection onto convex sets (POCS) is an iterative method of
finding an element of the intersection of a number of closed
convex sets [3]. The sets C,, and Cg are both closed and
convex. The intersection of the sets is also nonempty since
the null vector is contained in both. The point of convergence
is dependent upon the order of the projections and the initial
value. To find P linearly independent vectors that lie in the
intersection, it is intuitive to perform the sequential projection
algorithm with P different initial conditions. If the P solution
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vectors are not linearly independent, then it is necessary to try
additional initial conditions.

B. Linear Programming Approach

Linear programming can also be used to find vectors in the
intersection of the sets C,, and Cg. The problem is to find a
vector n > 0 such that

Gp=n (22)

where the vector p is unconstrained. An equivalent problem
is to find a vector n > 0 such that

Q'n=0 (23)
where N(QT) = R(G)*, and R(G)* denotes the orthogonal
complement of R(G). If the constraint Ef;l n; = 1, where
n = [n,... nN]T is included, then the problem becomes
finding a vector n > 0 such that

-]

where 1 is a N-dimensional vector whose elements are one,
and 0 is a N — P-dimensional vector whose elements are zero.

Phase one of the simplex method can be used to find a basic
feasible solution to the above problem and will indicate if no
solution exists [17]. Once a basic feasible solution is found,
additional basic feasible solutions can be found by pivoting
on selected elements in the system of equations. Each basic
feasible solution is a generating vector for the cone defining
the intersection of the positive orthant and the range space of
the matrix G.

(24)

C. Filter Sensitivity

There are limitations to the degree of accuracy with which
color filters can be fabricated. It is therefore necessary to
consider the sensitivity of the color correction results to errors
in the color filters. From Appendix B, an optimal set of filters
can also be denoted as any matrix G in the set

Co-={G|G=K;*VY YeM,} (@25

where the columns of matrix V are the P eigenvectors associ-

1 1
ated with the P largest eigenvalues of the matrix K} SSTK?,
and M, denotes the set of P x P nonsingular matrices. In
Appendix C, it is shown that to reduce sensitivity of the color
correction results to errors in the filters, the term & = %:‘f:,
where 0may, Omin are the maximum and minimum singular
values of the matrix G, should be minimized. The optimization
problem of finding a set of nonnegative filters that minimizes &
and is contained in the set Cg- can be formulated as follows:

Minimize &
with respect to the matrix Y, subject to
1
G=K;’VY >0

This problem can be approached using standard constrained
optimization methods [17].
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Fig. 3. Optimal three filters using only illuminant information.

V. EXPERIMENTS AND RESULTS

To test the performance of the filters, experiments were
performed in which the tristimulus values of reflectances under
several viewing illuminants were estimated from simulated
recorded data obtained from a single set of filters. Sets of color
filters were calculated using information about the viewing
illuminants and the HVSS. Sets of three, four, five, six, and
seven optimal filters (P = 3, 4, 5, 6, 7) were derived using
the method described in Section III-A for the five viewing
illuminants: CIE incandescent illuminant A, CIE daylight
illuminant D65, CIE fluorescent illuminant F2, CIE daylight
simulation illuminant C, and CIE fluorescent illuminant F7.
The viewing illuminants are shown in Fig. 2. Since there were
five viewing illuminants, K = 5 in (9). Uniform weighting
of the errors under each viewing illuminant was used so that
¥2 =1, i=1,...K in (9). A positive vector is contained in
the subspaces defined by the filter sets; therefore, in each case,
the filter subspace can be spanned by a set of nonnegative
filters. The optimization problem discussed in Section IV-C
was solved for each filter set using a numerical algorithms
group (NAG) constrained optimization routine on a CRAY Y-
MP. The optimal set of three, four, and five filters are shown in
Figs. 3-5. As the number of filters increases to six and seven,
multiple sharp peaks occur in the filter transmittances.
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To measure the performance of the filter sets, errors were
computed over ensembles of recorded reflectance spectra. A
spectral sampling width of 10 nm was used, which resulted in
N = 31 samples between 400 and 700 nm. The first data set
consisted of 343 spectral reflectances produced from a Cannon
color copier. The second data set consisted of 512 spectral
reflectances produced from a Kodak thermal dye transfer
printer. The third data set consisted of 64 spectral reflectances
recorded from a selection of Munsell chips. The copier and
thermal data sets were produced from varying densities of
cyan, magenta, and yellow colorants. The Munsell data set
was produced by pigments.

Sets of color filters were calculated using information about
the viewing illuminants and statistics about the reflectances
to be recorded. Sets of three, four, and five optimal filters
(P = 3,4,5) were derived using the method described in
Section III-B for each of the data sets with the five illuminants
A, D65, F2, C, and F7. Uniform weighting of the errors under
each viewing illuminant was used so thaty2 =1 i=1,... K
in (13). For each set of filters, one filter was positive; therefore,
the space in each case can be spanned by a set of nonnegative
filters. Again, the optimization problem discussed in Section
IV-C was solved for each filter set using a NAG constrained
optimization routine on a CRAY Y-MP. The optimal set of
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four and five filters for the copier data set are shown in Figs.
6 and 7. The optimal three filters for the copier data set vary
only slightly from that shown in Fig. 3.

A simulation was performed in which the P-stimulus values
of the reflectance spectra were obtained using each of the
derived filter sets. The recorded data using the filter set G is

c;=GTf; j=1,2-.. N;. (26)

where Ny is the number of reflectance spectra in the particular
ensemble. The CIE tristimulus values for each reflectance
ensemble were calculated using each of the five viewing
illuminants. This can be written as

ti; =ATL,f; j=1,2...N; i=12,...5 (27

For the filters that used information only about the viewing
illuminants, the estimated CIE tristimulus values were calcu-
lated using a minimum norm ML estimator. The estimate t;;
is

i’.,‘j = ATLvi(GT)ch . (28)
For the filters that used information about the reflectance

spectra, the CIE tristimulus values were estimated from the
recorded data using a LMMSE estimator. The estimate t;; is

ti; = ATL, K;G[GTK;G] [c,—- GTf] + A"L, F. (29)
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3 Filters 4 Filters 5 Filters
Tllum Errors HVSS Copier Set Copier Set Copier Set
AEavg 3.24 2.76 0.50 0.17
A AFEmax 14.16 11.00 2.39 1.47
AE >3 145 121 0 0
AEavg 0.75 1.43 0.31 0.27
D65 AEmax 2.80 6.92 1.05 1.19
AE>3 0 36 0 0
AFEavg 3.08 2.16 0.95 0.61
F2 AFEmax 23.48 14.94 3.48 298
AE >3 110 65 5 0
AE,vg 0.53 1.23 0.21 0.16
C AEmax 1.94 6.35 0.74 0.70
AE >3 0 26 0 0
AFEavg 0.75 1.24 0.21 0.11
F7 AEmax 2.62 4.89 1.35 0.93
AE >3 0 21 0 0
MSE 1.53E-3 1.30E-3 1.55E-4 3.83E-5

In practice, although a set of optimal filters is derived using
information about a particular spectral reflectance ensemble,
the filter set may actually be used on a wide range of
images. If the covariance matrix and mean are unknown for
the reflectance spectra being recorded, then the covariance
and mean for the reflectance spectra from which the filters
were derived could be used in the LMMSE estimator. If the
covariance matrix and mean of the reflectance spectra are
known, then that information could be used in the LMMSE
estimator even though the filters were not optimal for that data
set. In either situation, the mean square error will be larger than
if optimal filters for the data set being recorded were used
along with the correct statistics in the LMMSE estimator.

The AE«,+3+ values between f,-j and t;; were calculated
for several different cases and are contained in Tables I-XII.
The average color tolerance accepted in printing applications
has been studied and found to be approximately a AFEp«q=p-
of six [25]. The standard deviation in the accepted tolerance
was 3.63 AEL~,-p+. In another study, the perceptibility tol-
erance for pictorial images was investigated and the average
AFE[ .+ was found to be 2.15 [27]. If the AFEp»q+p« value
between two colors is less than three, then the colors are
difficult to visually distinguish. The values in the tables are
denoted as follows:

AF,. average AE[-,-5- value of the set

AE ., maximum AFEjp«q«p~ in the set

AFE > 3 number of errors with a AEy-,-p+ greater than

three

MSE sum of the mean square errors defined by (13).

For a particular viewing illuminant, the white point of a data
set was the CIE tristimulus value of the data set’s reference
white spectral reflectance under the viewing illuminant. The
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TABLE I
AEq« g5+ VALUES FOR COLOR CORRECTIONS USING THE THERMAL DATA SET
WITH THERMAL COVARIANCE AND MEAN IN THE LMMSE ESTIMATOR
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TABLE III
AEp«q=p~ VALUES FOR COLOR CORRECTIONS USING THE MUNSELL DATA SET
WITH MUNSELL COVARIANCE AND MEAN IN THE LMMSE ESTIMATOR

3 Filter 4 Filters 5 Filters 3 Filters 4 Filters 5 Filters
lllum Errors HVSS Thermal set Thermal set Thermal set Ullum Errors HVSS Munsell Set Munsell Set  Munsell Set
AEavg 4.29 3.83 1.40 0.38 JAV 2.71 2.31 0.71 0.30
A AFEmax 21.41 15.34 8.00 4.14 A AEmax 8.95 7.91 2.82 1.52
AE >3 270 265 65 3 AE >3 21 15 0 0
AFEavg 130 1.54 0.66 0.54 AFEayvg 0.72 124 0.38 0.25
D65 AFEmax 6.81 6.59 3.10 3.18 D65 AFEnax 2.40 4.59 1.68 1.04
AE >3 38 65 2 2 AE >3 0 3 0 0
AEayg 3.48 2.98 1.94 1.11 AE,.g 2.17 1.52 1.08 0.62
F2 AEmax 23.81 15.09 7.86 7.67 F2 AFEmax 9.41 6.36 3.83 2.40
AE >3 229 197 99 28 AE >3 14 5 4 0
AEavg 0.86 1.28 0.52 0.37 AEavg 0.47 1.07 0.43 0.15
C AEmax 4.79 6.09 1.81 224 C AFEmax 1.62 3.72 1.58 0.80
AE >3 18 40 0 0 AE >3 0 4 0 0
AE,vg 1.08 1.68 0.69 0.28 AFEavg 0.79 1.26 0.34 0.21
F7 AEmax 3.72 8.81 3.76 244 F7 AEmax 2.44 4.29 121 0.80
AE >3 2 62 12 0 AE >3 0 5 0 0
MSE 2.47E-3 2.14E-3 3.36E-4 8.65E-5 MSE 4.18E-3 3.50E-3 6.93E-4 8.00E-5

reference white spectral reflectance of the copier data set was
the spectral reflectance of the paper from which the data set
was measured. The reference white spectral reflectance of the
thermal data set was also that of the paper from which the data
set was measured. The reference white spectral reflectance
for the Munsell data set was that of a spectrally uniform
reflectance.

In the tables, the filters labeled HVSS refer to a set of filters
that, with a uniform recording illuminant, spanned the HVSS.
One such set would be the CIE color matching functions
shown in Fig. 1. This set of filters was used as a benchmark
since, in the design of commercial desktop scanners, attempts
are often made to span the HVSS. In Tables I-IX, the filters
labeled 3, 4, or 5 filters Copier set; 3, 4, or 5 filters Thermal
set; and 3, 4, or 5 filters Munsell set refer to filters derived
using statistical information about the copier data set, thermal
data set, and Munsell data set, respectively. In Tables X-XII,
The filters labeled 3, 4, 5, 6, or 7 filters illum. refer to the filters
derived using only information about the viewing illuminants.
In Table XV, the columns labeled €pmses €pmax1s €pmax2, and
LMMSE indicate that the results were obtained using the
filters and transformations from (15)~(17) and Section III-B-1,
respectively.

A. Discussion of Results

Most color imaging devices currently use three-color filters
to achieve color separation. The results of this work indicate
that a significant improvement in color correction results
is possible with the addition of a fourth filter. Although
an improvement is certainly expected, the magnitude of the
improvement with the additional filter is surprising. Tables
I-III contain the AEr.,«p- values for the copier data set,

thermal data set, and Munsell data set, respectively, using
the statistics in the LMMSE estimator and the optimal filters
associated with the recorded data set. The optimal four filters
in Tables I-IIT reduced the AEp.,«;- values significantly,
especially the maximum errors. In several cases, the maximum
error is reduced from one that would be visually noticeable to
one that would not be visually perceived. The addition of a
fifth filter did not provide a large improvement over the four-
filter case when using a LMMSE estimator for these data sets.
In one case (Table II, illuminant C, 5 filters), the addition of a
fifth filter resulted in an increase in the maximum AEp g-p-
error. This can be explained by the fact that the cost function
is MSE not AFE.,. It is noted that for illuminants D65, C,
and F7, the HVSS filters perform better than the optimal three
filters. For illuminants A and F2, the HVSS filters produce
significant color errors. The advantage of using an optimal set
of three filters over the HVSS filters is discussed in Section
V-B.

Tables IV-VI display the results of using filters derived from
one ensemble of spectral reflectances on a different ensemble
of spectral reflectances. This was performed to investigate
the sensitivity of the results to variations in the filters. The
statistics corresponding to the data set being recorded are used
in the LMMSE estimator. Again, using four filters produced
a significant drop in the AEy-4-3» values, and the addition
of a fifth filter did not provide a significant improvement over
the four filter case. In four cases, the addition of a fifth filter
resulted in a slight increase in the maximum AFEqsq+p+ error
(e.g., Table V, illuminant F2, 5 filters Munsell). This can be
explained by the fact that suboptimal filters are used and that
AFnax is not the cost function. Comparison of Tables I-IIT
with Tables IV-VI give some indication of the sensitivity of
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TABLE IV
COMPARISON OF THE AEj + 4+ VALUES FOR THE
COPIER ENSEMBLE USING VARIOUS FILTER SETS AND USING
THE COPIER STATISTICS IN THE LMMSE ESTIMATORS
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TABLE VI
COMPARISON OF THE AE[ « g+ p+ VALUES FOR THE MUNSELL
ENSEMBLE USING VARrIoUs FILTER SETS AND USING
THE MUNSELL STATISTICS IN THE LMMSE ESTIMATOR

5

3 Filters 3 Filters 4 Filters 4 Filters 5 Filters Filters

lllum Errors Munsell Thermal Munsell Thermal Munsell Ther-

Set Set Set Set Set mal

Set

AFEavg 2.72 2.73 0.50 0.50 0.27 0.18

A AEmax  11.00 10.94 2.57 2.53 2.06 1.43
AE>3 118 118 0 0 0 0

AE,vg 1.54 1.50 0.32 0.34 0.29 0.32

D65 AEmax 741 7.20 1.19 1.18 1.12 1.33
AE >3 41 39 0 0 0 0

AE,wg 206 2.11 0.93 0.95 0.66 0.66

F2  AFEmax 14.09 14.48 3.55 3.52 3.18 3.08
AE >3 60 61 5 5 1 1

AE,g 1.34 1.30 0.29 0.28 0.13 0.20

C AFEmax 687 6.66 1.08 1.08 0.53 0.80
AE >3 29 28 0 0 0 0

AFE,vg 134 130 025 0.23 0.15 0.11

F7  APFEmax 529 5.14 1.57 1.50 1.11 0.85
AE >3 28 23 0 0 0 0

MSE  1.30E-3 1.30E-3 1.65E-4 164E-4 4.31E-5 4.02E-5

TABLE V
COMPARISON OF THE AE + 4«5+ VALUES FOR THE THERMAL
ENSEMBLE USING VARIOUS FILTER SETS AND USING
THE THERMAL STATISTICS IN THE LMMSE ESTIMATOR

3 Filters 3 Filters 4 Filters 4 Filters 5 Filters 5 Filters

Ilum Errors  Copier Munsell Copier Munsell Copier Munsell
Set Set Set Set Set Set
AFE,vg 3.89 3.80 1.36 1.40 0.39 0.60
A AFEnax 1561 14.66 7.03 8.06 4.44 6.42
AE >3 267 265 58 65 4 16
JAV N 1.46 1.59 0.62 0.64 0.49 0.53
D65 AEmax  6.29 6.80 3.17 2.84 2.76 3.18
AE >3 54 68 2 0 0 2
AFEavg 3.01 2.96 1.97 1.93 1.09 1.22
F2  AEmax 1559 14.68 8.07 7.73 7.77 8.97
AE>3 202 196 102 98 28 39
AE,vg 1.19 1.34 0.44 0.52 0.33 0.30
C  AEmax 579 6.33 1.45 1.86 1.92 1.82
AE>3 33 49 0 0 0 0
AE,vg 1.60 1.73 0.61 0.72 0.29 0.39
F7  AFBEmax 830 9.39 322 3.88 2.76 3.55
AE >3 56 69 7 14 0 2
MSE  2.14E-3 2.14E-3 3.56E-4 3.37E-4 9.10E-5 9.42E-5

the results to variations in the filter spectral responses. The
errors obtained indicate that using filters that were optimal for
one data set work well with other data sets, given that the
proper statistics are used in the LMMSE estimators.

Tables VII-IX display the results of using statistics in the
LMMSE estimator, which correspond to the filters set used

3 Filters 3 Filters 4 Filters 4 Filters 5 Filters S Filters

Tlum Egro[rs Copier Thermal Copier Thermal Copier Thermal
N Set Set Set Set Set Set
AFEavg 2.37 2.33 0.75 0.72 0.21 0.22
A AFEmax 8.00 7.92 2.72 2.87 1.21 1.12
AE >3 15 15 0 0 0 0
AFEavg 1.13 1.20 0.31 0.38 0.27 0.30
D65 AFEmax 431 4.50 1.21 1.67 1.14 1.33
AE >3 3 3 0 0 0 0
AEavg 1.59 1.56 1.15 1.09 0.62 0.63
F2  APFEmax 6.78 6.49 4.17 3.87 2.59 2.58
AE >3 6 5 0] 0 0 0
AE,yg 0.96 1.03 0.33 0.42 0.19 0.21
C AFEmax 344 3.63 1.30 1.57 0.99 1.13
AE>3 1 2 0 0 0 0
AEavg 1.15 1.22 0.27 0.33 0.19 0.18
F7  AEnax 370 4.08 0.95 1.22 0.64 0.64
AE >3 4 5 0 0 0 0
MSE  351E-3 3.50E-3 7.46E-4 6.94E-4 9.26E-5 8.88E-5

TABLE VII
COMPARISON OF THE AFE7 « 5+« VALUES FOR THE COPIER ENSEMBLE
USING VARIOUS FILTER SETS WITH THE STATISTICS IN THE LMMSE
ESTIMATOR CORRESPONDING TO THE FILTER SET USED TO RECORD THE DATA

3 Dilters 3 Filters 4 Filters 4 Filters 5 Filters 5 Filters

Tium Errors Munsell Thermal Munsell Thermal Munsell Thermal

Set Set Set Set Set Set

AEavg 4.08 5.94 0.77 1.71 044 0.35

A AFEmax 1809 2592 1.75 4.16 2.03 1.32
AE>3 171 249 0 28 0 0

AEavg 233 2.10 0.93 0.85 0.43 0.72

D65 AEmax 7.94 541 3.04 2.33 1.76 2.37
AE >3 101 73 1 0 0 0

AEavg 274 2.58 2.24 2.89 1.00 1.47

F2 AEnmax 1636 8.29 7.55 6.26 422 5.21
AE >3 106 107 69 165 10 33

AEavg 2.10 2.11 0.97 0.89 0.19 0.45

C  AEnax 718 5.00 2.93 2.42 0.82 1.75
AE >3 83 70 0 0 0 0

AE.vg 1.94 2.70 0.38 0.83 0.31 0.27

F7  AFEmax 5.88 7.35 1.20 1.80 143 1.30
AE>3 176 127 0 0 0 0

MSE  3.68E-3 5.06E-3 7.41E-4 122E-3 122E-4 1.68E-4

to record the data. Since suboptimal filters are used along
with incorrect statistics in the LMMSE estimators, the results
should be worse than those obtained in Tables I-VI. The
improvement with the addition of a fourth filter is again
noticeable. Using incorrect statistics in the LMMSE estimators
and suboptimal filters, the average AFEp+q-5« value increased
slightly, with the addition of a filter, for six cases. Except for
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TABLE VIII
COMPARISON OF THE AE7 + 4+« VALUES FOR THE THERMAL ENSEMBLE
USING VARIOUS FILTER SETS WITH THE STATISTICS IN THE LMMSE
ESTIMATOR CORRESPONDING TO THE FILTER SET USED TO RECORD THE DATA

3
3 Filters Filters Filters 4 Filters 5 Filters 5 Filters
Mlum Errors Copier Mun- Coni Munsell Copier Munsell
opier
Set sell Set Set Set
S Set
et
AEqvg 6.96 5.20 1.51 1.58 0.68 1.16
A AFEmax 22,67 18.64 10.01 6.31 9.21 3.36
AE >3 416 336 59 50 18 2
AE,vg 297 2.18 0.93 1.00 0.91 1.21
D65 AEmax 1443 1128 3.08 243 5.96 3.61
AE >3 197 127 2 0 16 14
AEavg 434 4.01 2.57 2.77 2.01 2.79
F2  AFEngax 2551 2997 1027 6.32 15.48 7.05
AE >3 264 296 156 233 83 241
AEqvg 2.88 2.00 0.61 0.68 0.64 0.70
C AFEmax 13.09 1076  2.85 2.42 2.87 1.92
AE >3 197 112 0 0 0 0
AFEavg 3.62 2.81 0.64 0.79 0.48 0.66
F7  AFEmax 12.83 8.66 3.62 2.81 5.99 1.87
AE >3 281 191 5 0 11 0
MSE 5.92E-3 3.75E-3 9.37E-4 8.57E-4 2.80E-4 4.27E-4

one case, this increase occurred when going from four to five
filters (see Table VII, illuminant F2, 4 filters Thermal for the
exception). The effect of an increase in average AFEpr-q+p-
can be accounted for by the fact that incorrect statistics and
suboptimal filters were used and that a MSE cost function
was used.

Tables X-XII contain AFEp-,-p» values for the data sets
using filters obtained using only illuminant information and a
minimum norm ML estimator. This is equivalent to assuming
zero mean, uncorrelated spectra in the LMMSE estimator,
which is not a good assumption. The lack of information about
the reflectance spectra resulted in larger errors, as should be
expected. Note that in several cases an increase in the number
of filters resulted in an increase in the average AEp«g-p-
values and maximum AFEp.,-;- values for the set. This
increase is accounted for by the fact that the cost function
that was minimized was the maximum square error and not
the average or maximum AFEj«,-;+ values.

B. llluminant Subspace Weighting

As noted earlier, in Tables I-III, the HVSS filters perform
well for the illuminants D65, C, and F7 but perform poorly
for the illuminants A and F2. The optimal three filters produce
lower errors in illuminants A and F2 than the HVSS filters at
the expense of larger errors in illuminants D65, C, and F7.
Suppose that the goal is to obtain the smallest errors under
each illuminant such that the errors under each illuminant are
of the same magnitude.

The weighting factors ; can be used to weight the impor-
tance of color errors undervarious illuminants. A measure of
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how well three filters obtain colorimetric information of the
scene for a particular illuminant L,, can aid in the selection of
the ; to equalize the errors across the illuminants. Consider a
distance measure between the range space of the filters R(G),
and the range space the filters should ideally span R(L,, A).
The distance measure is

bci=|Pc—Pr.all2 (30)

where Pg, P, 4 are the orthogonal projection operators
onto R(G) and R(L,,A), respectively, 8¢ ; is the maximum
principal angle, and the norm is the matrix spectral norm
(see pp. 58, 76-78, 584-585 of [9]). This measure has been
suggested in previous color work [32] and signal-processing
applications [22].

The color correction errors are dependent on the reflectance
spectra. The above measure does not incorporate information
about the reflectance spectra that may be used in the estimation
process. The distance measure between the three filters G
and the HVISS L,, A for reflectance spectra with covariance
matrix Ky is defined as

-P
KZLiA

Xa,i = HP 31)

1
2
KfG 2

where PK are the orthogonal projection oper-

1 ., P 1

JZ G 1K fz L;A )
ators onto R(K?G) and R(K;L,,A), respectively. If the
reflectance spectra are 1uncorrelated (which is unlikely for
natural objects), then K? = I and xg; = g ;. Alternatively,
consider the case in which the reflectance spectra are highly
correlated. In particular, consider the case in which the re-
flectance spectra are contained in a 3-D subspace. If the basis
vectors, which define the reflectance subspace, are linearly
independent after projection onto the filter subspace, then the
reflectance spectra can be calculated exactly from the recorded
data [32]. In this case, perfect color correction follows, and
the value xg ; will be zero.

To check the correlation of xg,; with the color errors in
Table I, x,; was calculated for the copier data with the HVSS
filters and for the copier data with the three optimal copier
filters. The x values are contained in rows one and two of
Table XIII. Note that the x values correlate well with the color
correction results. The distance between the filter subspace and
a HVISS is a good measure of how well the filter set obtains
tristimulus values for that illuminant and explains the relative
poor performance of the HVSS filters for the illuminants A
and F2.

Using weights of v; = |/XG., in (13), where G is the three
optimal copier filters for v; = 1, the errors for illuminant A
and F2 should decrease at the expense of increased errors for
the remaining iltuminants. The resulting filter set is denoted in
Table XIII as three filters Copier Weighted. From the values in
Table XIII, observe that the weighted filter set is approximately
an equal distance from each of the five subspaces defined by
the illuminants and Munsell spectra. For direct comparison,
Table XIV contains the color errors for the HVSS filters,
the optimal copier filters, and the weighted copier filters. For
the weighted copier filters, the color errors are approximately
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TABLE IX
COMPARISON OF THE A K} » g+ VALUES FOR THE MUNSELL ENSEMBLE USING VARIOUS FILTER SETS WITH THE
STATISTICS USED IN THE LMMSE ESTIMATOR CORRESPONDING TO THE FILTER SET USED TO RECORD THE DATA

Illum Errors 3 Filters 3 Filters 4 Filters 4 Filters S Filters 5 Filters
Copier set Thermal set  Copier set Thermal set  Copier set Thermal set
AEqyg 3.46 2.76 0.96 1.30 0.46 0.45
A AFEmax 9.97 11.49 4.30 6.79 4.26 2.32
AE >3 35 21 6 0 2 0
AEavg 1.99 1.22 0.50 0.70 0.52 0.67
D65 AFEmax 6.33 3.79 2.09 2.18 332 2.37
AE >3 16 2 0 0 2 0
AEavg 2.15 2.12 1.57 1.99 1.16 1.37
F2 AFmax 6.11 5.06 6.92 5.60 8.47 4.48
AE >3 13 14 7 12 2 5
AEavg 1.72 1.03 0.41 0.52 0.29 0.46
C AFmax 5.67 3.44 2.15 1.26 1.54 1.87
AE >3 11 3 0 0 0 0
AEavg 1.83 1.38 0.41 0.64 0.35 0.33
F7 AFEmax 5.54 4.96 1.87 275 220 1.26
AE>3 11 6 0 0 0 0
MSE 3.51E-3 5.23E-3 7.46E — 4 1.28E—3 9.26E — 5 3.56E — 4
TABLE X TABLE XI

AEj} « g« VALUES FOR COLOR CORRECTIONS USING THE DATA
SET AND MINIMUM NORM MAXIMUM LIKELIHOOD ESTIMATOR

AEpxq4+p+ VALUES FOR COLOR CORRECTIONS USING THE THERMAL
DATA SET AND MINIMUM NORM MAXIMUM LIKELIHOOD ESTIMATOR

Tilum Errors HVSS 3 _Filters 4.Fillers Filfers 6'Fi1ters 7 .Filters
illum illum . illum illum
illum

AEavg 12.64 12.24 8.63 2.77 0.64 0.39

A AFEmax 24.60 26.05 16.00 8.75 1.50 0.68
AE >3 343 343 340 126 0 0

AEayg 3.18 5.58 6.77 1.09 0.36 0.29

D65 AFEmax 548  10.56 15.12 3.94 0.92 0.51
AFE >3 200 329 329 17 0 0

AE,g 7.25 4.62 9.49 3.91 0.60 0.55

F2 AFmax 1645 11.18  30.08 12.69 1.14 1.41
AE >3 343 330 340 179 0 0

AEqvg 2.54 4.97 5.20 1.12 0.37 0.29

C AEmax 4.53 8.34 11.06 3.83 1.09 0.66
AE >3 57 328 310 17 0 0

AFEayvg 2.98 5.81 2.71 0.72 0.64 0.66

F7 AFEmax 506 1146 8.75 3.35 2.62 1.99
AE >3 171 337 108 8 0 0

uniformly distributed among the five illuminants, which was
the original goal.

An advantage of this approach over using the HVSS filters
is that the v; in (13) or (9) can be adjusted to reduce errors
under one illuminant at the expense of another. Therefore,
the designer can distribute the color errors under the various
illuminants. In addition, the method indicates what subspace
the filters should span if more than three filters can be used
in the recording process.

C. Perceptual Cost Functions

As previously discussed the MSE is not the best measure of
perceptual error. The cost functions (15)-(17) may be more
appropriate. Minimization of the perceptual cost functions,
with respect to the filters G and the affine transformations
Wi;,z; i=1,... K,canbecome computationally expensive
due to the large number of variables involved. To test the
improvement that is obtained by using the cost functions
(15)—(17), sets of three optimal filters and the optimal affine

3 Filters 4 Filters 5 Filters 6 Filters 7 Filters

llum — Errors  HVSS "y 0 Tiijgm illum illum illum

AE.g 642 651 557 277 093 048

A AEma. 2220 1001 1881 1466 252 098
AE>3 395 402 353 154 0 0

AEws 284 375 488 119 057 039

D65 AEmax 636 1025 1919 496 182 094
AE>3 153 292 352 57 0 0

AFag 521 428 860 347 036 039

F2  AEmax 1923 1477 4325 1630 218 235
AE>3 390 352 459 170 0 0

AFag 217 307 365 122 039 030

C  AEmax 357 846 1516 472 LIl 129
AE>3 38 226 256 6l 0 0

AE.g 208 342 264 085 065 062

FI  AEmax 760 1325 1772 432 450 338
AE>3 123 223 133 33 ” 3

transformations were calculated for the Munsell data set with
the CIE illuminants A, D65, and F2. The perceptual color
space was the CIE L*a*b* color space. The minimizations of
(15)-(17) were performed on a CRAY Y-MP. For comparison,
three optimal filters using the method described in Section
III-B-1 were derived for the Munsell data set with the CIE
illuminants A, D65, and F2. The results are contained in Table
XV.

In Table XV, Illum AFE,,, and Illum AFE,,,. denote the
average of AF,,; and AFEn,x over the illuminants, respec-
tively. Cost functions (15) and (16) are used to minimize
AE, s and Illum AFE.,,, respectively. Cost function (17)
is used to minimize AF,,, over the illuminants. Note that
the HVSS filters produce the largest color errors of the five
filter sets, as should be expected. The € max 2 filters, which
minimize AFEp,,x over the illuminants, produced the largest
number of color errors with a total of 46. Of course, none
of those color errors were greater than a AEp.,-p« of 4.05
and may be difficult to detect. Finally, note that the LMMSE
filters performance is close to that of the €, filters. For this



158

TABLE XII
AEp «g+p+« VALUES FOR COLOR CORRECTIONS USING THE MUNSELL
DATA SET AND MINIMUM NORM MAXIMUM LIKELIHOOD ESTIMATOR
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TABLE XIV
CoMPARISON OF HVSS FILTERS, THREE OPTIMAL COPIER FILTERS vi =1,
AND THREE WEIGHTED COPIER FILTERS FOR THE COPIER DATA SET
WITH COPIER COVARIANCE AND MEAN IN THE LMMSE ESTIMATOR

! 4 5 ) !
Ilum  Errors HVSS 3;2;?5 Filters  Filters 6:;‘:;?8 75;1‘1:::5 3 Filters 3 Filters
illum  illum Ilum Errors HVSS Copier Cc_)pier
AE.vg 847 8.99 695 315 057 0.32 Weighted
A AEmax 1655 1495 1453 98] 1.40 0.63 AEavg 3.24 2.76 2.12
AE >3 63 64 61 30 0 0 A AEmnax 14.16 11.00 8.20
AEBa.y 253 3.75 504 118 036 0.29 AE >3 145 121 82
D65 AEmax 549 9.33 12.84 439 1.08 0.75 AEayg 0.75 1.43 2.06
AE >3 17 38 53 4 0 0 D65 AFEmax 2.80 6.92 9.37
AEa.wg 476 3.43 789 434 037 0.45 AE >3 0 36 80
F2  APEmax 1489 10.00 26.15 14.96 1.18 1.80 AEavg 3.08 2.16 2.06
AE >3 43 33 61 37 0 0 F2 AFEmax 23.48 14.94 12.73
AE..g 196 3.21 374 127 024 0.24 AE >3 110 65 67
C  AFEmax 336 7.19 928 437 095 0.68 AEqyg 0.53 1.23 1.85
AE>3 3 32 39 4 0 0 C AEmax 1.94 6.35 8.73
AEqvg 2.85 4.49 2.32 0.65 0.82 0.62 AE >3 0 26 71
F7 AEmax 571 1018 752 332 371 2.66 AE,yg 0.75 1.24 1.91
AE >3 29 48 16 2 2 0 F7 AEmax 2.62 4.89 7.62
AE >3 0 21 77
MSE 1536 -3 130E—3 144FE—3
TABLE XIII
X VALUES FOR FILTER SETS
filters Tlium A Tlum D65 Illum F2_lllum C_ Tllum F7 TABLE XV
AFE] *g+p+ VALUES FOR COLOR CORRECTIONS USING THE MUNSELL DATA SET
HVSS 0.091 0.019 0.053 0.015 0.022 wITH HVSS FILTERS, LMMSE FILTERS, AND PERCEPTUAL FILTERS
Copier 3 v; =1 0.075 0.033 0.038 0.029 0.032 ’ .
Copier 3 Weighted 0.057  0.049 0040 0.046 _ 0.050 Ium  Emors HVSS IMMSE  epmse  €pmayvl  €pmay2
AEag 271 1.76 1.67 3.12 2.43
A AFmax 895 5.65 7.16 443 4.05
spectral reflectance data set and set of illuminants, a LMMSE AE>3 21 8 16 33 16
cost function is not unreasonable to use for minimizing the ABag 217 148 095 1.57 218
F2 AFEmax 941 4.86 5.75 2.39 4.05
AEp-qup- errors. AE>3 14 6 4 0 16
AFavg 072 1.93 1.19 0.49 2.03
VI. CONCLUSION D65 AFEmax 2.41 6.70 5.91 2.49 4.05
AE>3 0 12 5 0 14
Methods were introduced for selecting a subspace an op- Tlum AF,., 1.87 1.72 1.27 2.06 221
timal set of color filters should span given only spectral Mlum A Emax 6.93 5.74 6.28 3.11 4.05

information about the viewing illuminants or given the viewing
illuminant spectra in addition to statistics of the reflectance
spectra. The results of this work indicate that the use of four
color filters could reduce the color errors between the original
image and the reproduction well below the just noticeable
difference threshold when linear transformations are used to
correct the data. In addition, filters derived using statistics for
one ensemble of reflectance spectra perform well for other
reflectance spectra ensembles.

APPENDIX A
DERIVATION OF MIN/MAX FILTERS

The error term in (9) can be rewritten as

~.T ~
€= Max (f - f) SST(f —f
/ Hfll2sl( ) ( )

= Max (f - f) BAsBT(f - f)

(32)
112 <1

where S = [y,01,7,0,...,74x0g], SST = BAsBT,
As = Diag[/\l,/\z, ey /\Q, 0, .. .,0], BTB = IN)(Nv Q is
the rank of the matrix S, and f is the estimated spectral
reflectance calculated from the recorded data. The A;’s are the
squares of the singular values of matrix S. It will be assumed
that the A;’s are ordered so that \; > \;41.

Recall that the product of the recording illuminant L, and
the color filter matrix N is the matrix G = L,.N. Incorporating
the estimate f = P r(e)f from (12) into (32), the minimization
of ¢ with respect to R(G) can be written as

¢— 1}\2/3};[)1 H%ﬂéi)g(l(f PR(G)f) BAsB (f PR(G)f)
r(G)=P
(33)
= Mi T1-p BAsBT(I- Py f
(I;G/{)'I{;PHMI%If (I-Ppra)BAsBY( rie)f)

where 7(QG) is the rank of the matrix G. If x = Pynf =
I-p Rr(c))f, which is the unique orthogonal projection of f
onto the null space of the matrix G”, then ¢ can be rewritten
as

Min Max xTBAgBTx

~NcT) lIx2=1
v@T)=N-—P xeN(GT)

¢ = 34

where v(G”) is the dimension of the null space of the
matrix GT'. Note that the minimization in (34) is performed
with respect to the null space of the matrix G7, and the
maximization includes the constraint that x € N(GT). From
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the Courant-Fischer theorem (see pp. 148-149 of [14]), it
follows that

¢= Min  Max x"BAsBTx =),

NcT) Ixl2<1
wGT)y=~n—P xenN(GT)

(35)

where the min/max is achieved when N(GT) = R([bpyy,
bpig, ... by]) or equivalently when R(G) =R([by, ba, ...
bp]), where the {b;} are defined in (32).

APPENDIX B
DERIVATION OF MEAN SQUARE ERROR FILTERS

The error term in (13) can be rewritten as
em = E[(f - £)"SST(f - )]

where 8§ = [1,01,7203,...,7xkOx] and the estimated spec-
tral reflectance f depends on the color filters and the type
of estimator used. Since the ensemble is known, a LMMSE
estimator will be used.

The mean of the reflectance spectra is known; therefore, the
P-stimulus mean can be removed from the recorded data, and
the CIE tristimulus mean for the ensemble under a particular
illuminant can be added to the corrected zero-mean data. Since
the mean can be removed from the recorded data, it will
be assumed for simplicity that the mean of the reflectance
spectra ensemble is the zero vector. In the absence of noise,
the LMMSE estimate of the reflectance spectra is

(36)

f = K;G[GTK;G]"'GTf (37
where K is the covariance matrix of the reflectance spectra,
and the P x N matrix G is the color filters combined with
the recording illuminant, i.e., GT = NTL,.

Substituting

—f=(1-K;G[GTK;G|'GT)f (38)

into (36) and performing algebraic manipulations produces
em = Trace[SST(K; — K;G[GTK;G]'GTK;)]. (39)

To produce a more manageable cost function, the matrix
H-= KJ?G will be substituted into (39) to produce

ém = Trace[SST(K; - KIH[HTH]'HTK})].  (40)

Equation (40) can be rewritten as
ém = Trace[SSTK ] — Trace[K?SSTK?H[HTH|~'H|
(41)
from which it is clear that an optimal matrix H, which
minimizes ¢,,, will maximize
1 L
¢ = Trace[K}SSTKZH[H"H]'H7). (42)
An orthonormalization of the columns of the matrix Hyy p
can be performed using the Gram-Schmidt process. This
will produce a matrix Vyyp such that VIV = Ip,p and
Hyxp = VyxpYpyp, where Ypy p is nonsingular.
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Substituting H = VY into (42) results in

¢ = Trace[ VIK 1SSTK? V. 43)

The above trace is maximized with respect to the matrix
V when the columns of the matrix V are the orthonormal
elgenvectors assoc1ated with the P largest eigenvalues of the

matrix K2SS [‘K2 [13, page 191]. Therefore, the optimal
matrix V* satisfies

K:SSTKiV* = V*A 44)

where A = Diag[61,02,...,6p] and §; > 63 >
From the equations H* = V*Y, H* = Kf%G*, it follows
that every matrix G in the set
Ca» = {G|G = G*Y SS"K;G" = G*A for some Y € M, }
(45)
minimizes €,, in (13) with respect to G, where M, denotes
the set of P x P nonsingular matrices.

APPENDIX C
FILTER SENSITIVITY

If the specified set of filters is denoted by the matrix G and
the perturbation from the set is denoted by §G, then the mean
square error for the filter set G + 6G is

m = E[(f —£)"SST(f - 1)] (46)

where the estimate of f is

f=K;(G+6G)[(G+6G)TK(G + 6G)] (G + 6G)7f.

“47
It is assumed that the the columns of the matrix G + 6G
are linearly independent since linearly dependent filters would
not be used for color separation. Following the development
of Appendix B by substituting (47) into (46) and using the

relationship H = K} G produces

€m = Trace[SSTK/]
~ Trace[K :SSTK? (H + §H)[(H + 6H)”
x (H + §H)| ™ (H + 6H)”]

= Trace[SSTK/] — (48)

where 6H = K;&G.
Using the relationship H = VY from Appendix B, where
Y is nonsingular and V is orthogonal, ¢ becomes
¢ = Trace[K:SSTKE (V + §V)[(V + 6V)T
x (V4 6V)] 71V +6V)T]
(49)

where

5V = KI6GY™ (50)

and the columns of matrix V are the P eigenvectf)rs associated
L 1
with the P largest eigenvalues of the matrix K;: SSTK;.
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The increase in mean square error introduced by the per-
turbation is the difference between (43) and (49), which can
be written as

s = Trace[(P, — P )K’ SSTK? 2] (51)
where P, and P, are the orthogonal projection operators
onto the range spaces of matrix V and V + §V, respectively.
The magnitude of a perturbation can be quantified using the
matrix spectral norm. The spectral norm is useful since for
a given perturbation matrix G, the spectral norm of that
matrix ||§G/|z is related to the largest error produced by the
perturbation. Mathematically, this can be expressed as
Max||(G + 6G)Tf - GTf|| = Max [|6GTf|| = ||§GT||,.
lIfll<1 ff<1
It is of interest to relate the magnitude of the relative per-
turbation ”—GlIL to the error s. ||P, — P, represents the
distance between the subspaces spanned by the ideal filters
and the _perturbed filters. From [26], a bound on the error

[P, — P,||2, given that 16V]l2 < 1, is
. rle 5Gll 216G 1>
P, - B, }s < —— ICL: < MGl
14 [ 5ol = ;156212
AR o E ]

(52)
where Pl is the orthogonal projection operator onto the
orthogonal complement of the range space of the matrix V

k= Omax (53)
O min
and Omax, Omin are the maximum and minimum singular
values of the matrix G. Perturbations for which |6V, > 1
would be large enough to cause the filters to become linearly
dependent. A sufficient condition to guarantee that ||§V|[z < 1
is
1

16Gllz € ————
AT

62))

Consider the effect of the error ||P,,—P,||2 on s. Using results
from p. 183 of [14], the error s is bounded by

s = Trace[(P, — P,)K!SSTK}]

N
< Zai(Pv

=[P, —PvHZTrace[K SSTKf] (55)

N
Pv)‘Sz S “Pv - Pv”? 261

=1

where g;(P,, -P, ) denotes the ith singular value of the matrix
P, — Pv, and 6; denotes the ith eigenvalue of the matrix
K2 ssTK2

In the above development, the only term that can be
controlled is 4. The filters should be specified such that &
is as small as possible since this will reduce the upper bound
on ||P, — Pv“z and, hence, the upper bound on the error s.
Minimization of & can be used as a criteria for the selection of
a matrix Y to enforce the filter nonnegativity constraint (see
Section IV).
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