
H
umans have always seen the world in color but only recently have we been able to
generate vast quantities of color images with such ease. In the last three decades,
we have seen a rapid and enormous transition from grayscale images to color
ones. Today, we are exposed to color images on a daily basis in print, photographs,
television, computer displays, and cinema movies, where color now plays a vital

role in the advertising and dissemination of information throughout the world. Color monitors,
printers, and copiers now dominate the office and home environments, with color becoming
increasingly cheaper and easier to generate and reproduce. Color demands have soared in the
marketplace and are projected to do so for years to come. With this rapid progression, color and
multispectral properties of images are becoming increasingly crucial to the field of image pro-
cessing, often extending and/or replacing previously known grayscale techniques. We have seen
the birth of color algorithms that range from direct extensions of grayscale ones, where images
are treated as three monochrome separations, to more sophisticated approaches that exploit the
correlations among the color bands, yielding more accurate results. Hence, it is becoming
increasingly necessary for the signal processing community to understand the fundamental dif-
ferences between color and grayscale imaging. There are more than a few extensions of concepts
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and perceptions that must be understood in order to produce
successful research and products in the color world.

Over the last three decades, we have seen several important
contributions in the field of color image processing. While there
have been many early papers that address various aspects of
color images, it is only recently that a more complete under-
standing of color vision, colorimetry, and color appearance has
been applied to the design of imaging systems and image pro-
cessing methodologies. The first contributions in this area were
those that changed the formulation of color signals from simple
algebraic equations to matrix representation [8], [9], [15]. More
powerful use of the matrix algebraic representation was present-
ed in [13], where set theoretic methods were introduced to color
processing. The first overview
extending signal processing con-
cepts to color was presented in
IEEE Signal Processing Maga-
zine in 1993 [14]. This was fol-
lowed by a special issue on color
image processing in IEEE
Transactions on Image Pro-
cessing in July 1997, where a
complete review of the state of
the art at that time was found in
[11]. More recently, we have seen the introduction of several
texts that address color image processing [10], [12].

The articles selected for this special section concentrate, in
general, on the processing and application of color for input and
output devices. They have been chosen to provide the reader
with a broad overview of color techniques and usage for hard-
ware devices. However, innovative color applications extend far
beyond the topics covered within this issue. To this effect, color
has been widely utilized and exploited for its properties in many
applications, including multimedia and video, database indexing
and retrieval, and exchange of information, to name a few.
Furthermore, the extension of color concepts to multispectral
imaging has been shown to provide significant increases in
accuracy by recording more than the usual three spectral bands.
Applications of these special devices have been primarily con-
centrated in the fine arts [17].

To avoid much duplication among the selected articles, we
have chosen to focus the balance of this article on a brief review
of the fundamental concepts of color, thereby allowing each of
the subsequent articles to concentrate on their particular topic.
This introduction is followed by “Color Image Generation and
Display Technologies’’ [1], where we describe the capabilities
and limitations of the primary hardware systems responsible for
creating and displaying color images. In particular, we focus our
attention on the most popular input devices, namely scanners
and digital cameras, and output devices such as LCD displays
and ink jet and laser printers. With digital still cameras becom-
ing so common and having outstripped film cameras in total
revenue generated, it is appropriate to review their fundamen-
tals herein. This is accomplished by the article “Color Image
Processing Pipeline’’ [3]. In this article, the authors outline the

steps required to create a digital image from the analog radiance
information of a natural scene. The following article, titled
“Demosaicking: Color Filter Array Interpolation’’ [5], focuses on
one of the most important steps in a consumer digital camera
imaging pipeline, where the methods of decoding mosaics of
color pixels to produce high-resolution continuous color images
are discussed in detail. Having seen an example of an imaging
device, it is natural to discuss the underlying optimization tech-
niques that take into consideration all the individual steps in a
given system in an attempt to maximize its performance. The
article titled “System Optimization in Digital Color Imaging’’ [4]
chooses two examples of color printing and discusses the meth-
ods and results of optimizing them, clearly highlighting the

total gain achieved by consider-
ing the system as a whole.

At this point, the focus of
the issue shifts from hardware
and system centric to image
processing techniques that
form the backbone of many
color systems and applications.
The first of these is discussed in
“Detection and Classification of
Edges in Color Images” [6],

where the emphasis is placed on detecting discontinuities, i.e.,
transitions from one region to another, instead of similarities in
a given image. One of the most fundamental steps in many
applications and in the design of image processing techniques is
to ensure that a given image is optimized for noise and
enhanced in quality. This is outlined in the article “Vector
Filtering for Color Imaging” [7], where the authors discuss and
compare the various techniques outlining their strength, areas
of improvements, and future research directions. Finally, the
article titled “Digital Color Halftoning” [2] provides a complete
review of the methods employed by printers to reproduce color
images and the challenges they face in ensuring that these
images are free of visual artifacts.

FUNDAMENTALS OF THE EYE
It is assumed that the readers of this issue are familiar with the
basics of the human eye. Recommended texts that describe the
eye in detail include those by Wandell [16] for an overall study
of psychovisual phenomena, Barlow and Mollon [21] for physi-
ology, and Wyszecki and Stiles [22] for a brief description of
physiology and its relationship to photometric requirements.
This article provides a brief overview to set the stage for the
upcoming articles.

Incident light is focused by the cornea and lens to form an
image of the object being viewed on the retina. The retina, at the
back of the eye, contains the rods and cones that act as sensors
for the human imaging system and operate in different ways and
at various light levels. The rods and cones are distributed
unevenly throughout the retina. The rods are utilized for mono-
chromatic vision at low light levels, termed “scotopic vision.”
The cones, on the other hand, are the primary source of color

METAMERISM IS BASICALLY COLOR
ALIASING AND CAN BE DESCRIBED BY

GENERALIZING THE WELL-KNOWN
SHANNON SAMPLING THEOREM
FREQUENTLY ENCOUNTERED IN

COMMUNICATIONS AND DIGITAL 
SIGNAL PROCESSING.
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vision in bright light, a condition known as “photopic vision.”
Three different types can be found in normal observers. These
are called short (S), medium (M), and long (L) due to their
enhanced sensitivity to short, medium, and long wavelengths of
light. In particular, the S, M, and L cones are most sensitive to
blue, green, and yellow-green light, respectively (Figure 1), pro-
viding a qualitative basis for representing a digital color image
with red, green, and blue (RGB) monochrome images. 

IMAGE FORMATION
Before we begin to characterize the spectrum of a pixel, we need
to define the physical quantity that we are measuring. For cam-
eras, the quantity of interest is the radiant energy spectrum that
is obtained in a solid angle emanating from the pixel on the focal
plane. For scanners, the quantity of interest is the spectral
reflectance of a pixel-shaped area on the image. The reflectance
can be obtained since the radiant energy spectrum of the illumi-
nation of the scanner is known. Figure 2 provides an illustration
of this process for a digital camera. From a physical point of view,
the radiant power emitted by a source is measured in watts.
Likewise, the power received by a detector is measured in watts.
Since the power is a function of wavelength, the unit should be
watts/nanometer. The total power integrated over all wavelengths
is called “radiant flux.” We denote radiant flux per nanometer by
r(λ). Discussions of radiometry are found in [22]. The details
include factors relating to the angles of viewing, angles of
reflectance, and the luminance efficiency function of the eye.

MATHEMATICAL DEFINITION OF COLOR MATCHING
A vector space approach to describing color is useful for express-
ing and solving complex problems in color imaging. For this
reason, we will use this notation to describe the fundamentals of
color matching. Let the N × 3 matrix S = [s1, s2, s3] represent
the response of the eye, where the N vectors, si, correspond to
the response of the ith type sensor (cone) (Figure 1). A given vis-
ible spectrum can be represented by an N vector, f, a function
whose value is radiant energy. Hence, the response of the sen-
sors to the input spectrum is a three vector, c, obtained by

c = STf. (1)

Two visible N-vectors spectra f and g are said to have the
same color if they appear the same to a human observer. In our
linear model, this implies that if f and g represent different spec-
tral distributions, they portray equivalent colors if

STf = STg. (2)

From this, it can be easily seen that many different spectra can
result in the same color appearance to a given observer. This fasci-
nating phenomena is known as metamerism (meh taḿ er ism), and
the two spectra are termed as metamers. In essence, metamerism is
basically color aliasing and can be described by generalizing the
well-known Shannon sampling theorem frequently encountered in
communications and digital signal processing. It should be noted,
however, that the level of metamerism may vary across various
observers, dependent on their individual cone sensitivities.

Since it is not practical to characterize the spectral sensitivi-
ty of all observers, the color community, in the form of the
Commission Internationale de l’Eclairage (CIE), has tabulated a
standard set of color matching functions that represent the
response of a “standard observer” to matching monochromatic
light at various wavelengths with varying intensities of three
primary lights. These functions are shown in Figure 3 as dashed[FIG2] Image formation process in digital still camera.
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lines. If we let the matrix Argb represent the relative amount of
each of the primaries required to match a standard intensity of
monochromatic light, then it can be shown that S can be
obtained by a linear transformation of the color matching
matrix, Argb. Indeed, any matrix that can be obtained by a linear
transformation from Argb or S can be utilized for color match-
ing. The derivations are discussed in detail in [14].

In practice, it is desirable to have a matrix of color matching
functions that are nonnegative, so they can be physically realized as
optical filters. This problem was addressed by the CIE, in 1931,
yielding the XYZ color matching functions shown in Figure 3 as
solids lines. Hence, the matrix A can now be used to represent these
functions. The Y value was chosen to be the luminous efficiency
function, making it equivalent to the photometric luminance value.
This standardization led to the precise definition of colorimetric
quantities, such as tristimulus values and chromaticity.

The term “tristimulus values” refers to the vector of values
obtained from a radiant spectrum, r, by t = [X ,Y,Z ]T = ATr
(we recognize the inconsistency of denoting the elements of t by
X, Y, Z, but since the color world still uses the  X, Y, Z terms, we
use it here). The chromaticity is then obtained by normalizing
the tristimulus values yielding

x =X/(X + Y + Z)

y =Y/(X + Y + Z)

z =Z/(X + Y + Z).

Since x + y + z = 1, any two chromaticity coordinates aresuf-
ficient to characterize the chromaticity of a spectrum. In general,
as a matter of convention, the x and y terms are used as the stan-
dard. A chromaticity diagram constructed from x and y, (as shown
in Figure 6) is often employed to describe the possible range of col-
ors that can be produced by a color output device. This maximum
range is plotted as a horseshoe or shark fin shaped curve, which
represents the chromaticities of monochromatic light.

MATHEMATICS OF COLOR REPRODUCTION
To reproduce a color image, it is necessary to generate new vec-
tors in N space (spectral space) from those obtained by a given
multispectral sensor. Since the eye can be represented as a
three-channel sensor, it is most common for a multispectral
sensor to use three types of filters. Hence, the characteristics of
the resulting multispectral response functions associated with
the input and output devices are critical aspects for color repro-
duction. Output devices can be characterized as being additive
or subtractive. Additive devices, such as cathode ray tubes
(CRTs), produce light of varying spectral composition as viewed
by the human observer. On the other hand, subtractive devices,
such as ink-jet printers, produce filters that attenuate portions
of an illuminating spectrum. We will discuss both types in the
following, clearly highlighting their differences.

ADDITIVE COLOR SYSTEMS
In additive devices, various colors are generated by combining
light sources with different wavelengths. These light sources

are known as primaries. An example of this is illustrated in
Figure 4. In the figure, it can be easily seen that cyan, magen-
ta, yellow, and white are generated by combining blue and
green; red and blue; red and green; and red, green, and blue,
respectively. The red, green, and blue channels of an example
color image are also shown for illustration purposes. Other
colors can be generated by varying the intensities of the red,
green, and blue primaries. For instance, the screen of a televi-
sion, or CRT, is covered with phosphoric dots that are clus-
tered in groups. Each group contains these primary colors:
red, green, and blue, which are combined in a weighted fash-
ion to produce a wide range of colors. Additive color systems
are characterized by their corresponding multispectral output
response. For instance, a three-color monitor is represented by
the N × 3 matrix, E, which serves the same purpose as the pri-
maries in the color matching experiment. The amount of each
primary is controlled by a three-vector c. The spectrum of the
output is then computed as follows:

f = Ec, (3)

Hence, the tristimulus values associated with a standard
observer who is viewing the screen are given by

t = ATf = ATEc. (4)

There are several challenges that need to be considered
when dealing with additive systems. One is to choose the con-
trol values so that the output matches the intended target val-
ues. This is not feasible for all possible colors due to the power
limitations of the output device. Furthermore, the control val-
ues cannot be negative, i.e., we cannot produce negative light.
In addition, we have the question of estimating the best values
of c from some recorded data.

[FIG3] CIE RGB and XYZ color matching functions: RGB are shown
in dashed lines, and  XYZ are shown in solid lines.
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SUBTRACTIVE COLOR SYSTEMS
Subtractive systems are characterized by the fundamental prop-
erty that color is obtained by removing (subtracting) selected
portions of a source spectrum. This is illustrated in Figure 5,
where cyan, magenta, and yellow colorants are used to absorb,
in this respect, the red, green, and blue spectral components
from white light. The cyan, magenta, and yellow channels of a
color image are also shown for illustration purposes. Hence,
each colorant absorbs its complementary color and transmits
the remainder of the spectrum. The amount of light removed,
by blocking or absorption, is determined by the concentration
and material properties of the colorant. The color is generally
presented on a transmissive medium like transparencies or on a
reflective medium like paper. While the colorant for subtractive
systems may be inks, dyes, wax, or toners, the same mathemati-
cal representation outlined in previously can be used to approx-
imate them. The main property of interest for imaging in
subtractive systems is the optical density. The transmission of
an optically transmissive material is defined as the ratio of the
intensity of the light that passes through the material to the
intensity of the source. This is illustrated by

T = Iout

Iin
. (5)

As a result, the optical density is defined by

d = − log10(T) (6)

and is related to the physical density of the material.
The inks can be characterized by their density spectra,
the N × 3 matrix D. Hence, the spectrum that is seen
by the observer is the product of an illumination
source, the transmission of the ink, and the reflectance
of the paper. Since the transmissions of the individual
inks reduce the light proportionately, the output at
each wavelength, λ, is given by

g(λ) = l(λ)t1(λ)t2(λ)t3(λ) (7)

where ti(λ) is the transmission of the ith ink and l(λ)

is the intensity of the illuminant. For simplification,
the reflectance of the paper is assumed perfect and is
assigned the value of 1.0. The transmission of a partic-
ular colorant is related logarithmically to the concen-
tration of the ink on the page. The observed spectrum
is obtained mathematically by

g = L
[
10−Dc

]
(8)

where L is a diagonal matrix representing an illuminant
spectrum and c is the concentration of the colorant.
The concentration values are held between zero and
unity and the matrix of density spectra, D, represents
the densities at the maximum concentration. The expo-
nential term is computed componentwise, i.e.,

10r = [10r1 10r2 . . . 10rN ]T. (9)

This simple model ignores nonlinear interactions between
colorant layers. For a reflective medium, the model requires
an additional diagonal matrix, which represents the
reflectance spectrum of the surface. For simplicity, this can
be conceptually included in the illuminant matrix L. The
actual process for subtractive color reproduction is much
more complicated and cannot, in general, be comprehensive-
ly modeled by the equations described here. Hence, these sys-
tems are usually characterized by look-up tables (LUTs) that
capture their input-output relationships empirically. The
details of handling device characterizations via LUTs are
described in [19] and [18].

GAMUT
The range of colors that are physically obtainable by a color
system is called the gamut of the device. For an additive
device, like a CRT, the gamut is easily described. Since the col-
ors are linear combinations of three primaries, the possible
colors are those obtained from the relation

c = Cmaxβ (10)

where Cmax is the matrix of tristimulus values for the maximum
control value (usually 255) of each color gun and β is a vector whose
values vary independently between zero and unity. The graphical rep-
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[FIG4] Additive color system.
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resentation of the gamut is most often done using the chromaticity
coordinates for a fixed luminance. Figure 6 shows the gamut of a
CRT monitor, a dye-sublimation printer, and the sRGB color space.

COLOR SPACES
The proper use and understanding of color spaces is necessary
for the development of color image processing methods that
are optimal for the human visual system. Many algorithms
have been developed that process in an RGB color space with-
out ever defining this space in terms of the CIE color match-
ing functions, or even in terms of the spectral responses of R,
G, and B. Such algorithms are nothing more than multichan-
nel image processing techniques applied to a three-band
image, since there is no accounting for the perceptual aspect
of the problem. To obtain some relationship with the human
visual system, many color image processing algorithms oper-
ate on data in hue, saturation, lightness (HSL) spaces.
Commonly, these spaces are transformations of the aforemen-
tioned RGB color space and hence have no visual meaning
until a relationship is established back to a CIE color space. To
further confuse the issue, there are many variants of these
color spaces, including hue saturation value (HSV), hue satu-
ration intensity (HSI), and hue chroma intensity (HCI), some
of which have multiple definitions
in terms of transforming from RGB.
Since color spaces are of such
importance and a subject of confu-
sion, we will discuss them in detail.

There are two primary aspects of
a color space that make it more
desirable and attractive for use in
color devices: 1) its computational
expediency in transforming a given
set of data to the specific color
space and 2) conformity of dis-
tances of color vectors in the space
to that observed perceptually by a
human subject, i.e., if two colors
are far apart in the color space, they
look significantly different to an
observer with normal color vision.
Unfortunately, these two criteria
are antagonistic. The color spaces
that are most suited for measuring
perceptual differences require com-
plex computation, and vice versa.

UNIFORM COLOR SPACES
It is well publicized that the psycho-
visual system is nonlinear and
extremely complex. It cannot be
modeled by a simple function. The
sensitivity of the system depends on
what is being observed and the pur-
pose of the observation. A measure of

sensitivity that is consistent with the observations of arbitrary
scenes is well beyond our present capabilities. However, much
work has been done to determine human color sensitivity in
matching two color fields that subtend only a small portion of
the visual field. In fact, the color matching functions (CMFs) of
Figure 3 are more accurately designated by the solid angle of the
field of view that was used for their measurement. A two-degree
field of view was used for those CMFs.

It is well known that mean square error is, in general, a
poor measure of error in any phenomenon involving human
judgment. A common method of treating the nonuniform error
problem is to transform the space into one where Euclidean
distances are more closely correlated with perceptual ones. As a
result, the CIE recommended, in 1976, two transformations in
an attempt to standardize measures in the industry. Neither of
these standards achieve the goal of a uniform color space.
However, the recommended transformations do reduce the
variations in the sensitivity ellipses by a large degree. In addi-
tion, they have another major feature in common: the meas-
ures are made relative to a reference white point. By using the
reference point, the transformations attempt to account for the
adaptive characteristics of the visual system. The first of these
transformation is the CIELab space defined by

[FIG5] Subtractive color system.
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L∗ =116
(

Y
Yn

) 1
3 − 16 (11)

a∗ =500

[(
X
Xn

) 1
3 −

(
Y
Yn

) 1
3

]
(12)

b∗ =200

[(
Y
Yn

) 1
3 −

(
Z
Zn

) 1
3

]
(13)

for (X/Xn), (Y/Yn), (Z/Zn) > 0.01. The values Xn, Yn, Zn are
the CIE tristimulus values of the reference white under the
reference illumination, and X, Y, Z are the tristimulus val-
ues, which are to be mapped to the CIELab color space. This
maps the reference white to (L∗, a∗, b∗) = (100,0,0) . The
requirement that the normalized values be greater than 0.01
is an attempt to account for the fact that at low illumination
the cones become less sensitive and the rods (monochrome
receptors) become active. Hence, a linear model is used at
low light levels. A second transformation is the CIELuv
space defined by 

L∗ =116
(

Y
Yn

) 1
3 − 16 (14)

u∗ =13L∗(u − un) (15)

v∗ =13L∗(v − vn) (16)

where

u = 4X
X + 15Y + 3Z

(17)

v = 9Y
X + 15Y + 3Z

(18)

un = 4Xn

Xn + 15Yn + 3Zn
(19)

vn = 9Yn

Xn + 15Yn + 3Zn
. (20)

The un and vn tristimulus values represent a reference white
and the formula is good for (Y/Yn) > 0.01. Errors between two
colors c1 and c2 are measured in terms of

�E ∗
ab =

[
(L∗

1 − L∗
2)

2 + (a∗
1 − a∗

2)
2 + (b∗

1 − b∗
2)

2
]1/2

(21)

�E ∗
uv =

[
(L∗

1 − L∗
2)

2 + (u∗
1 − u∗

2)
2 + (v∗

1 − v∗
2)

2
]1/2

.

(22)

The CIE has since updated �E ∗
ab with a new weighted version,

which is designated �E ∗
94 [24]. The new measure weights the

hue and chroma components in the �E ∗
ab measure by a func-

tion of chroma. Specifically, the measure is given by

�E ∗
94 =

[(
�L∗

kLSL

)2

+
(

�C∗
ab

kCSC

)2

+
(

�H ∗
ab

kHSH

)2
]1/2

(23)

where

SL = 1

SC = 1 + 0.045C ∗
ab

SH = 1 + 0.015C ∗
ab (24)

C ∗
ab =

√
(a∗)2 + (b∗)2 (25)

�H ∗
ab =

√
(�E ∗

ab)
2 − (�L∗)2 − (�C ∗

ab)
2 (26)

and for reference conditions

kL = kC = kH = 1. (27)

The color term, C ∗
ab, used in (24) can be taken as a reference

color against which many comparisons are made. If only a sin-
gle color difference is computed between two samples, then the
geometric mean of C ∗

ab of the samples is used.
The just noticeable difference thresholds of �Eab and �E94

are much lower in the experimental setting of psychovisual
experiments than in pictorial scenes. Color difference measures,
such as the �Es in the sCIELab space [23], have been developed
to provide an improved measure for pictorial scenes.

The uniform color spaces can be utilized as a means to display[FIG6] Color gamuts shown in chromaticity space.
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the gamut of a particular device, as shown in Figure 7 for a dye-
sublimation printer and a CRT. The CIELab and CIELuv color
spaces can be used to visualize color attributes such as hue, chro-
ma, and lightness. These perceptual color terms, as well as satura-
tion (which is frequently confused with chroma), are defined in
Wyszecki and Stiles [22, p. 487]. Figure 8 displays a three-dimen-
sional plot of the CIELuv space and quantities that correlate with
these attributes. A similar figure can be generated for CIELab.

DEVICE INDEPENDENT (UNRENDERED) 
AND DEPENDENT SPACES
The terms “device independent” (DI) and “device dependent”
(DD) color spaces are frequently used in problems dealing with
accurate color recording and reproduction. A color space is
defined to be DI if there exists a nonsingular transformation
between the color space and the CIEXYZ color space. These
spaces are also called “unrendered” since the values in the
space describe the colorimetry and are not used to drive an
output device. If there is no such transformation, then the
color space is a DD color space. DD spaces are typically related
to some particular output or input device. They are often used
for the simple reason that most output and input devices
report or accept values that are in a DD space. A simple exam-
ple is the eight-b/channel RGB scanner that provides values
that are contained in a cube defined by the points (0, 0, 0) and
(255, 255, 255). This cube is a DD color space. The space, how-
ever, is still useful since the DD RGB values can be sent direct-
ly to a monitor or printer for image display. However, it is
often the case that the output image will not look like the orig-
inal scanned image.

STANDARD DD (RENDERED) SPACES 
To maintain the simplicity of the DD space but provide some
degree of matching across input and output devices, standard DD
color spaces have been defined. These spaces will be referred to as
standard DD spaces. An example of such a color space is sRGB
[20]. These spaces are well defined in terms of a DI space. As such,
a device manufacturer can design an input or output device such
that, when given sRGB values, the proper DI color value is dis-
played. Because the values in these spaces can be used to drive
output devices, they are often referred to as rendered spaces. 

COLOR MEASUREMENT INSTRUMENTS
To measure color accurately, a given instrument must have care-
fully controlled lighting conditions, optical geometry, and sen-
sors (filters and detectors). If the color of a reflective material is
to be measured, the illumination must be precisely known and
matched with the sensors. Media properties such as specular
reflectance and translucence should be taken into account to
achieve accurate results. However, if only the tristimulus values
or some derivative of them, such as L∗a∗b∗ values, are desired, a
colorimeter may be used. This device has spectral sensitivities
designed to match the vector space defined by the eye. Thus, the
measurement is limited to a given set of viewing conditions. As a
result, the colorimeter needs to measure only the quantities that

can be transformed into tristimulus values. The minimal system
consists of three filters and three detectors or changeable filters
and a single detector. Colorimeters are much less expensive than
those devices designed to measure the entire spectrum. The
most complete information is obtained by measuring the entire
visible spectrum, thereby allowing the user to compute tristimu-
lus values under any viewing condition. This is achieved by uti-
lizing a spectroradiometer to measure radiant spectra or a
spectrophotometer to measure reflective spectra. To measure the
spectrum, it is required that the spectrum of the light be spread
physically. This can be done with a prism, as Newton did in his
famous early experiments, or more accurately, by utilizing opti-
cal gratings, which are more precise and compact than prisms.

[FIG8] CIELuv color space and its relationship to commonly used
color perception terms. 

[FIG7] Color gamuts shown in CIELab space: monitor grid,
printer solid. 
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To this effect, a system of lenses is used to focus the spectrum
onto the detector to obtain the measurements. After the spec-
trum is spread, the intensity of the light at each wavelength is
measured accurately. This can be done in several ways. The most
common method, currently, is to use a linear CCD array. A mov-
able slit can also be used to limit the wavelength band being
measured. The exact spread of the spectrum on the array is
determined by measuring a known source. Interpolation meth-
ods are then used to generate the data at the specified wave-
lengths. The high-quality optics required for this task greatly
increase the cost of these color measurement instruments.
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