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Abstract

We introduce a general framework for the efficient computation of the real continuous wavelet transform (CWT) using
a filter bank. The method allows arbitrary sampling along the scale axis, and achieves O(N) complexity per scale where
N is the length of the signal. Previous algorithms that calculated non-dyadic samples along the scale axis had
O(N log(N})) computations per scale. Our approach approximates the analyzing wavelet by its orthogonal projection
(least-squares solution) onto a space defined by a compactly supported scaling function. We discuss the theory which uses
a duality principle and recursive digital filtering for rapid calculation of the CWT. We derive error bounds on the wavelet
approximation and show how to obtain any desired level of accuracy through the use of longer filters. Finally, we present
examples of implementation for real symmetric and anti-symmetric wavelets. £ 1997 Published by Elsevier Science B.V.

Zusammenfassung

Wir stellen eine allgemeine Methode vor fiir die effiziente Berechnung der kontinuierlichen Wavelettransformation
(KWT) anhand von Filterbinken. Die Methode erlaubt eine beliebige Unterteilung der Skalierungsachse, und erreicht
eine Berechnungskomplexitit von O(N) pro Skalierung, wo N die Ldnge des Signals darstellt. Gingige Algorithmen mit
einer nicht diadischen Unterteilung der Skalierungsachse bendtigen O{(Nlog(N)) Berechnungen. Die vorgestellte
Methode approximiert die analisierende Wavelet durch eine orthogonale Projektion (minimaler quadratischer Fehler)
auf einen mit kompakten Skalierungsfunktionen definierten Raum. Wir stellen eine Theorie vor welche auf dem
Dualitétsprinzip beruht und welche rekursive numerische Filter fiir eine schnelle Berechnung der KWT gebraucht. Wir
berechnen Fehlergrenzen der Waveletapproximierung und zeigen wie eine beliebige Genauigkeit erreicht werden kann
durch den Gebrauch von langeren Filtern. Abschliessend stellen wir Beispiele vor fiir die Implementierung von realen
symmetrischen und anti-symmetrischen Wavelets. € 1997 Published by Elsevier Science B.V.

Resume

Nous introduisons un cadre général pour le calcul efficient de la transformée en ondelettes continue (TOC) a 'aide d’un
banc de filtres. La méthode permet un échantillonage arbitraire le long de I'axe des échelles, et présente une complexité en
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O(N) par échelle, ou N est la longueur du signal. Les algorithmes antérieurs qui calculaient des échantillons non-
dyadiques le long de I'axe des échelles nécessitaient O(Nlog(N)) calculs par échelle. Notre approche tire parti d’une
fonction d’échelle compacte pour analyser I'ondelette. Nous discutons notre théorie, qui utilise le principe de dualité et le
filtrage numérique récursif pour le calcul rapide de la TOC. Nous dérivons des limites d’erreur sur approximation
d’ondelette et montrons comment obtenir n’importe quel degré de precision en utilisant des filtres plus longs. Enfin, nous
présentons des exemples d’'implantation pour des ondelettes réelles symétriques et antisymétriques. © 1997 Published by

Elsevier Science B.V.
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1. Introduction

The continuous wavelet transform (CWT) has
received significant attention in its capacity to per-
form a time-scale analysis of signals. Its ability to
zoom in on singularities has made it an attractive
tool in the analysis of non-stationary signals [1].
We define the real CWT of a real continuous signal
s(t) as

Wys(a, 1) = ﬁj‘jx s(t)l//(T ; t> de,

where « and 7 are, respectively, the continuously
varying scaling and shifting parameters, and the
real function y(t) is the mother wavelet.! Clearly,
the CWT is a redundant representation of the sig-
nal s(t).

In practice, the variables « and 7 are sampled
over the plane of values. Fast algorithms exist for
computing wavelet transforms at dyadic scale
values o = 2', when the wavelet is associated with
a multi-resolution [2,3]. In particular, if the
wavelet is derived from a multi-resolution analysis
[2], then Mallat’s algorithm provides sample
values o = 2, 7 = 2’k with a global O(N) complex-
ity. A related approach is the ‘a trous’ algorithm
which supplies the sample values x =2, © =k,
i, ke Z, with O(N) computations per scale [4, 5].
The ‘a trous’ algorithm has also been used to com-
pute the CWT at the integer sample values x = i,
T = k, again with O(N) operations per scale [6]. An

"To simplify the notation throughout the paper, we use a def-
inition of the wavelet transform that is a time-reversed version of
the conventional one.

algorithm for complex wavelet analysis with O(N)
complexity per scale 1s discussed in [7]. This last
method allows for an arbitrary sampling of the
scale but is restricted to Gabor-like wavelets (iL.e.,
modulated Gaussians). Except for those special
cases, the most efficient algorithms to date typically
require O(N log(N)) computations per scale [8, 9].

In this paper, we introduce a fast method for
computing general real CWTs at the sample values
1 = 2g2", t = k, where Q is a number selected to
achieve a desired exponential sampling rate along
the scale axis. This fine sampling of the scale is
obtained by approximating wavelets of various
sizes using a compactly supported scaling function,
a principle that has been previously used by several
authors [10, 11]. What distinguishes our method
from those previous approaches is that we achieve
O(N) complexity per scale, instead of the
O(N log(N)) reported in [10]. A drawback with the
approach described in [10] is that the sequences of
coefficients used for filtering are usually infinite,
even if the wavelet and scaling functions are com-
pactly supported. Our new method avoids this infi-
nite filter sequence by use of a dual representation
of a compactly supported scaling function, which is
used to approximate the analyzing wavelet. An-
other feature is that we have full controt over the
approximation error, and that we can achieve any
desired level of accuracy. We show that the quality
of the approximation can be improved by using
a higher-order scaling function or by adjusting the
size of the finer scale wavelet. In either case, reduc-
ing the error may result in longer FIR filters. Low
errors are obtained with moderately short filters.
For example, to approximate the second derivative
Gaussian wavelet using cubic splines, a symmetri-
cal filter length of 17 is needed to achieve an rms
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error of 0.01. Our approach is a least-squares for-
mulation since the approximation at the finer scales
is the orthogonal projection of the wavelet onto
a space defined by some scaling function (e.g. cubic
B-spline). Finally, although we consider the real
case in this paper, this method, as well as most
others, is applicable to the complex CWT.

The organization of the paper is as follows. In
Section 2, we specify the properties that the scaling
function must satisfy to provide an admissible
multi-scale approximation of the wavelet. In addi-
tion, we discuss the algorithm itself in the general
framework of compactly supported scaling func-
tions and wavelets. In Section 3, we provide error
bounds on the wavelet approximation and introduce
two mechanisms to control the approximation er-
ror in the algorithm. Finally, in Section 4, we dis-
cuss implementation and present examples for
several wavelets using B-spline scaling functions of
various degrees.

2. Theory of the fast algorithm

In this section, we formulate the fast wavelet
transform algorithm. We discuss the general pro-
perties that are required for implementation and
present the mathematics of the algorithm. The only
requirement at this stage is that both the scaling
function and wavelet are compactly supported.
Specific examples will be presented in Section 4.

2.1. Scaling function requirements

The problem is to compute the values W s(a, 1),
which can be expressed in terms of the convolution

Wys(a, ) = (s x Y, )(1), (1)
where
1
) = 7¢(£). @
NEIN

Direct computation of (1) would involve O(N?)
operations per scale, while an FFT-based method
would require O(N log(N)) operations per scale. To
achieve O(N) complexity per scale, our approach is

to approximate the wavelet with its orthogonal
projection onto a subspace defined by a compactly
supported scaling function. To insure that the pro-
jected wavelet is admissible, and to allow rapid
calculation, the compactly supported scaling func-
tion ¢ must satisfy the following three conditions:

() 0<A <TI0 +21k)|* < B; where p(w)
is the Fourier transform of ¢(t);

(i) ¥,z @(t — k) =1 (partition of unity);

(iil) @(t/2) = ¥,z h(k)p(t — k) (two-scale relation).

The stability property (i) implies that
{@(x — k)}rez is a Riesz basis of the subspace

V,= {h(x) =Y clk)o(x —k), celz}, (3)
keZ

and that V,, is a well-defined (closed) subspace of L,
[12]. This insures that the process of approximat-
ing a wavelet in ¥V, makes sense. Property (ii)
guarantees that the orthogonal projection of an
admissible wavelet i onto the subspace defined by
@ is an admissible wavelet as well (cf. Proposition
1 below). Property (iii) is usually referred to as the
two-scale relation, and its importance in the algo-
rithm is discussed in Section 2.2.

A necessary condition? for a function ¥ to be an
admissible wavelet is

f“ Yt =0 4

Before proving that the projected wavelet satisfies
this condition, it is necessary to introduce the dual
of the scaling function ¢, which is the unique func-
tion @€V, for which

{fr, @) = oLk =1}, ()

where §[ k] is the discrete unit impulse at the origin,
o= @(x — k), and ¢ ) denotes the L, inner
product.

The least-squares approximation of y(t/a)€ L, in
the subspace V,, will be denoted by a tilde and is

2In fact, this condition is sufficient for all practical purposes,
of. [1, p. 26].
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given by the following two equations:

Y puk)olt — k)

keZ
J (t) — Where pa(k) = <l//1(l)7 (OP(I - k)>’ (6)
Y. da(k)(t —k)
keZ
where g,(k) = (. (1). @(r — k). (7)

Now let us consider the admissibility of the projec-

tion of i onto the subspace V..

Proposition 1. I/ € L, is an admissible wavelet and
the scaling function @ satisfies properties (i) and (ii),
then the orthogonal projection €V, satisfies the
admissibility condition (4).

Proof. We first note the relationship
+
J Y dt =0 < §(0)=0
and the following Fourier transform pair:

Y oolt—i)=1 < ¢Q2nk)=0o[k], keZ  (8)

ieZ
Taking the Fourier transform of (6), the orthogonal
projection of ¥ onto V,, can be expressed as [12]

J() = py(@)plow), (9)

where

- ¢lw + 2nk)
= + 2nk .
pil@) = ) Ylo+ 2k

Evaluating (9) at w = 0 and using (8) produces
N " d[k]
0) = 2nk) ———————
0= L Ve e
S L "
Yiez |9Cnl)|

3{0]

0

2.2. Mathematics of the algorithm

In order to achieve O(N) complexity per scale,
we will replace the computation of the convolution
in Eq. (1) by its approximation

Wy s(a 1) = (sx §,)(x), (10)

where 1, is the orthogonal projection of
Y.(t) = o~ 2y (t/2) onto the subspace V,,. Although
¥, is an approximation of y,, we can control the
quality of the approximation, as will be shown in
Section 3.

Given that we have a compact scaling function
@ that satisfies properties (i), (1) and a compactly
supported wavelet i, the function ¥, can be com-
pletely characterized by a finite sequence of coeffi-
cients in the dual expansion (7) which is expressed
as

Ual0) = (g% D) () = ¥ @.(b)p(x — k), (11)
k

where the symbol * denotes the mixed convolution
operation.

The motivation for using the dual representation
instead of the usual projection formula (cf. Eq. (6))
Wo(t) = (pa* @)(t) is that the sequence p,(k) is usu-
ally infinite, even when ¢ and ¢ are compactly
supported. This follows from the fact that the dual
of a symmetrical compactly supported scaling func-
tion is generally infinite, except for the Haar case
where ¢ is a unit rectangular pulse [1]. Since we are
approximating wavelets that are either symmetric
or anti-symmetric, it is essential to use a symmetric
scaling function in order to preserve the wavelet
symmetry properties.

Substituting the approximation ¥, (cf. Eq. (11))
into Eq. (10) produces

W ys(a, ) = gu % (s * §)(2). (12)

From the definition (cf. Eq. (5)) and the projection
formula, the dual of the compact scaling function
can be expressed as

o(1) = ((a) "' * @) (0), (13)
where (a~1)(/) is the convolution inverse of the
finite sequence a(l) = <@, ¢,), ie. (@) '+a)(l) =
o[ 1. Substituting Eq. (13) into Eq. (12), we get

Wys(2. 1) = ((qa* (@) # 50)(1), (14)
where s, 18
So(t) = (s * )(¢). (15)

In practice, we will only evaluate W,,,s(oz, 7) at the
integers. It is therefore necessary to calculate the
samples so[k] = so(t)];=x from the signal values
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s[k] = s(t)|;=x. To compute the continuous convo-
lution in Eq. (15), it is essential to know the signal
s(t) in a continuous fashion. Such a continuous
representation can be specified by interpolating the
sample values with an interpolating kernel ¢,(¢)
such that s(1) = ¥, s[ i — 1) = (s @)(@) [12].
One possibility is to choose the interpolation kernel
for the space V,, (cf. Eq. (3)) [13]. Using the inter-
polator ¢(t), computation of sy[k] from s[k] is
performed using

so[k] = {s(x), > = (s*@p, i) = (arx5)(k), (16)

where a(I — k) = {oy(x — 1), p{x — k).

Eq. (16) is the general initialization equation for
the algorithm. An alternative to using Eq. (16) is to
calculate a discrete approximation of the continu-
ous convolution given in Eq. (15). In such an ap-
proach, the samples so[k] are approximated as

solk] = (s * b)(k), (17)

where b(k) = @(t)],=x.

Sampling Eq. (14) at t = k produces W ,s(a, k) =
(g, * (@)~ ' % so)(k), which involves filtering of the
sequence so(k) with an FIR filter q,(k) and an IIR
filter (@)~ !(k), which can be implemented recursive-
ly. Details of implementation are discussed in
Section 4.

In order to compute the samples at a particular
scale, it 1s necessary to know the FIR filter coeffi-
cients g,(k) associated with ,. In practice, how-
ever, it 1s not essential to have an FIR filter for
every scale. Instead, we will only use @ FIR filters
to calculate the CWT for the Q scales in the first
octave

2 =052, j=0,..,0—1, (18)

and then use property (iii) of the scaling function to
compute the CWT for @ scales in each of the higher
octaves. The samples in the ith octave can be effi-
ciently calculated from the values

e

Given the FIR filters

q}(k) = <wa,, (pk>7 ]: Ov ,Q - 1’ (19)

x=k

50 | {3, et i (K) =5 *‘P[;T)

x=k

—> [a(0)hy [ W, s(a,2k)

[(“)_l(k)]h. [q_;(k)]n, > st(aﬂ%ﬂ',k)

»|[2,],., st(aozmgﬂ,k)

Fig. 1. Schematic representation of the general algorithm.

the samples s;(k), and the IIR filter {a)~!(k), the
values for the ith octave are

Wlps(do 2uetiie) k) ={(lg;*(a)” x5 (k),
j=0,...,0—1. (20)

The notation [v],: indicates that v(k) is expanded
by a factor of 2 (i.e. 2! zeros between sequence
samples). The sequence s;4(k) can be efficiently
computed from s;(k) using

Si 1 (k) = (s [h]-2)(K). (21)

Details of the above equations are given in
Appendix A. A diagram of the system is shown in
Fig. 1.

3. The approximation error

The above approach provides an approximation
to the wavelet transform, the quality of which de-
pends upon the wavelet and scaling functions.
There are essentially two ways to control the error:
change the scaling function, or adjust the size of the
finer scale x, (cf. Eq. (18)). In either case, reducing
the error may result in longer FIR filters.

In general, the approximation power of a scaling
function ¢ will depend on its ability to reproduce
polynomials up to a certain degree n. This maxi-
mum degree plus one gives the order of accuracy
of the representation. It is also directly related to
the multiplicity of the zeros of @(w) (the Fourier
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transform of ) at all frequencies w = 2nk, where
k is a non-zero integer. The precise formulation of
these mathematical properties is provided by the
Strang-Fix conditions, which are discussed in Ap-
pendix B. These conditions imply that we can con-
trol the error by adjusting the sampling step k. In
our situation, where the sampling step is fixed, this
1s equivalent to dilating the wavelet by a factor
a=h"1 For a scaling function of order L, the
general error bound (B.6) can be rewritten in the
following equivalent form:

=l - Bl <SElmI=S @)

where ) is the Lth derivative of ¥, and ¥, is the
approximation of , in V,; note that the factor
o~ Y% in the definition of ¥, (cf. Eq. (2)) provides the
correct inner product normalization for the dila-
tion of the wavelet and its approximation. The
numerator on the right-hand side of (22) is the
product of two constants: a first term C,, which is
a function of the representation, and a second
wavelet-dependent term C, = || ||, which can
be pre-computed by integrating in the time or fre-
quency domain:

C-//:\/ f PP dx
_ fij

V2r )«

An implicit assumption is that the L first deriva-
tives of ¢ are defined in the L,-sense. Eq. (22)
indicates that the approximation error decreases
with the Lth power of the scale. Clearly, the error
will be maximum at the finer scale ay. Our design
strategy is therefore to select the parameters «, and
L such as to maintain this error below a certain
threshold ¢ (worst-case scenario). For this purpose,
we can make use of the asymptotic relation (B.9).
Specifically, we can rewrite this equation as

|
+o

| ()] deo.

> ¢, C
e =l == asa—+ o0, (23)

where the constant C, is given by (B.10). For our
experiments, we used polynomial splines of degree
n, which have an order of approximation

L =n+ 1. If ¢ is the B-spline of degree n, then
@(w) = sinc"* (w/2m), and it is possible to compute
the constant C, explicitly:

C _ 1 Z (n+1)' 2: |BZn+2l
2T+ DI \ 2k ! (2n +2)V
where | B,,| is the modulus of Bernoulli’s number of

degree 2n (cf. [14, Eqgs. (23.1.2) and (23.1.18)]),

+

| Byl = 22n)! ¥ (2mk)~2"

k=1

This yields the following numerical value: C, =
372678 x 10" 2 for n = 1, C, = 9.09241 x 10~ * for
n=23,and C, = 229874 x 107> for n = 5.

This general behavior of the error as a function
of the scale was verified experimentally for several
examples of wavelets. Fig. 2 provides the graph of
the approximation error for an anti-symmetric
wavelet (first derivative of a Gaussian) (cf. Fig. 5)
obtained with our least-squares method using piece
wise linear (n = 1), and cubic splines (n = 3). The
two curves exhibit the characteristic O(1/x*) behav-
ior predicted by the theory. The asymptotic curves
given by (23) are also represented and are in perfect
agreement with the experimental results as & be-
comes sufficiently large. Note that the curve
reaches its asymptotic regime much quicker when
a lower-order approximation is used. Fig. 3 shows
a similar graph for the approximation of a Mexican
hat wavelet (second derivative of a Gaussian) (cf.
Fig. 6). In either case, the improvement that can be
achieved at a given scale by switching to a higher-
order representation is quite substantial.

For our experiments, we selected an error thre-
shold of ¢ = 0.01 and choose to determine the cor-
responding finer scale parameter x4 by solving (23)
as a function of a. An alternative approach, which
may be more appropriate for higher-order splines,
is to compute a few error values which can then be
used to determine an upper error bound of the form
Ca~ % where C = C,- C, (cf. Eq. (B.6) in Appendix
B). In our system, this error analysis is only applic-
able to the first octave, because the higher octaves
all use the same wavelet approximations dilated by
a power of two. In fact, the error is exactly the same
for all octaves because the wavelets have a nor-
malized energy.
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4. Implementation of the algorithm

In this section, we look at implementing the
algorithm for various wavelets, using centered B-
spline scaling functions to approximate the wavelet.
The B-spline functions are compact and satisfy the
three properties given in Section 2. In addition,
they are flexible enough to produce a good approx-
imation of almost any wavelet shape. A B-spline
function of degree n, represented by f"(x), is simply
the (n + 1)-fold convolution of the unit pulse func-
tion. The integer sample values of the nth degree
B-spline are denoted by b"(k) = B"(x)| x=«.

4.1. The filter coefficients

Once the wavelet has been selected, an approxi-
mation error level must be specified as discussed in
Section 3. This will set the degree of the B-spline
and the fine scale a,. When these parameters are
known, the FIR filters

qi(k) = Yoy Bi>s J=0,....0 =1, 24)

can be calculated (cf. Eq. (19)). These filters are
computed by numerical integration methods.
Again the length of the FIR filters depends upon
the degree of the B-spline, the fine scale 2y, and the
support of the wavelet.

With a B-spline implementation, property (iii) in
Section 2 is given by "(x/2) = ¥, _,u5(k)f*(x — k)
where the u5(k) are the binomial filters [15]

1 ontld k| < (n+ 1)2
k) =22 \k 4+ (n+ 12 NISVT S

0, otherwise.

The remaining filter in the algorithm is the ITR
filter (a)~' = (b*"**)~ ™. Note that the algorithm in-
volves the enlarged filter [(h*"*')™!].,, which will
require the execution of an IIR ‘a trous’ filter. Fast
implementation of this IIR ‘4 trous’ filter and the
FIR ‘4 trous’ filters are discussed in the next section.

4.2. Fast B-spline implementation

(1) Initialization. Initialization of the algorithm in-
volves the one time calculation of sy(k). Using

Table 1
Algorithm filter coefficients and parameters

IIR filter (@) ' parameters

Spline FIR filter b™

order n, coefficients d, lz;] <1
1 1 1
3 1/6 (+, 4,1) 6 z=-2+.3
7 1/5040 (=, 2416, 1191, 5040  z, = — 0.53528
120,1) z, = — 0.122555
z3 = — 0.00914869

Note: The notation * indicates that the filter is symmetric.

a spline of degree n, in approximating the
wavelet, and a spline of degree n, 1n interpola-
ting s[k], the computation in producing an
approximation to sq(k) is {cf. Eq. (17))

so(k) = b™ = s[k], (25)

where b™ is a symmetric FIR filter of length
n, + 1 (sampled B-spline of degree n,). Coeffi-
cients for the filter are given in Table 1 for
various spline degrees.

If the exact initialization is performed, then
the computation is (cf. Eq. (16))

So(k) = putn- 1 *(bnz)'l *S[k],

where the filter (b™) ! transforms the sample
values from the cardinal spline representation
to the basic spline representation [13]. As in
the approximation (25), b ™! is a symmet-
ric FIR filter whose coefficients are given in
Table 1 for several degrees.

(i1) The FIR ‘a trous filters. The algorithm re-
quires implementation of the FIR filters [15 ],
and [g,]w. The filter [¢5];» can be decom-
posed into a cascade of filters given by

(15 (k)]

1

= 5 [u9) i * [u3 ] % - % [u5 ]k — ko) ,
. — 4

n,+ 1 times

where the shift ko = (i + 1)(n; + 1)/2 is due
to the definition of wuS(k) which is
uS(k) = 8[k] + [k — 1]. Each filter [u3];
consists of only one addition, which means
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Table 2
Algorithm filter coefficients for cubic B-spline approximation of the Mexican hat wavelet. Since the filters are symmetric only half the
coefficients are shown

{a)

qo g1 q2 q3 qa qs
7.86839E — 1 8.06546E — 1 8.24748E — 1 8.41499E — 1 8.56865E — 1 8.70918E — 1
3.58644E — | 4.02186E — 1 4.44946E — 1 4.86533E — 1 5.26626E — 1 5.64971E — 1

— 2.43728E — | — 2.10886E — 1 — 1.71461E — | — 1.26294E — 1 — 7.63618E — 1 —227152E -2
— 3.25052E — — 3.49672E — 1 — 3.6693E — 1 — 3.75476E — 1 — 374407E — 1 — 3.63305E — 1
— 1.44864E — 1 — 1.83494E — 1 — 2.24816E — 1 — 2.66787E — 1 — 3.07035E — 1 — 3.43085E — 1
— 3.35908E — 2 — 5.17306E — 2 — 7.59024E — 2 — 1.06397E — 1 — 1.42863E — 1 — 1.84213E — 1
— 4.45724E — 3 — 8.70529E — 3 ~ 1.58655E — 2 — 2.71156E — 2 — 4.36474E — 2 — 6.64414E — 2
— 3.36269E — 4 — 8.9972E — 4 — 2.13945E — 3 — 4.62615E — 3 —921115E — 3 — 1.70128E — 2
—8.19113E — 6 — 4.50248E — 5 — 1.73427E — 4 — 5.28104E — 4 — 1.37056E — 3 —3.17197E — 3
— 14759E — 7 — 3.58314E — 6 — 2.78422E — 5 — 1.27731E — 4 — 424214E — 4
4.98443E — 8 — 2.71909E — 6 — 2.66356E — 5
—6.22115E — 8

(b)

96 q7 qs 9 qd10 q11
8.83735E — 1 8.95398E — | 9.05985E — 1 9.15579E — | 9.24256E — 1 9.32091E — 1
6.01381E — 1 6.35728E — | 6.67938E — 1 6.97985E — 1 7.25879E — 1 7.51663E — 1
3.35801E — 2 9.14932E — 2 1.50067E — 1 2.08444EF — 1 2.65886E — 1 321777E — 1

— 3.42239E — 1 —31713E — 1 — 2.72587E — 1 — 2.25989E — 1 — 1.73211E — | — LIS622E — 1
—3.7259E — 1 — 3.93546E — 1 — 4.04443E — 1 —4.04361E — 1 — 3.92987E — 1 — 3.70576E — 1
— 2.28653E — 1 — 2.73816E — 1 — 3.16997E — 1t — 3.55427E — 1 — 3.8655E — | —4.08251E -1
— 9.60139E — 2 — 1.32198E — 1 — 1.74017E — 1 —2.1969E — 1 — 2.66774E — 1 —3.12411E -1
—293152E -2 —4.7375E - 2 —~ 7.21576E —2 — 1.04061E — 1 ~ 1.42679E — | — 1.868E — 1
— 6.68919E — 3 — 1.2981E — 2 — 2.33402E -2 — 391265E -2 — 6.15053E -2 —9.11483E — 2
— 1.15417E — 3 — 2.76264E — 3 — 5.98962E — 3 — 1.18915E — 2 — 2.17834E — 2 —3.70742E - 2
— 1.32958E — 4 — 4.50669E — 4 ~ 1.23004E — 3 — 2.9526E — 3 — 6.41176E — 3 — 1.27234E — 2
— 3.90106E — 6 — 3.88602E — 5 — 1.85645E — 4 — 5.97465E — 4 — 1.57948E — 3 —3.71234E — 3
— 2.65512E — 7 — 9.60464E — 6 — 7.76508E — 5 — 3.15764E — 4 — 9.24475E — 4
— 6.10238E — 10 — 1.84295E — 6 — 3.20561E — 5 — 1.79798E — 4
—223123E -7 — 1.29972E — 5
— 8.47032E -9
that the binomial filter [u% (k)];» can be imple- (i) The [IR recursive ‘a trous’ filter. The filter
mented with n; + 1 additions per sample. Al- [(a)~ (k)]s can be implemented as a recursive
ternatively, [u3'(k)];» can be implemented in filter. Since (a) ™! is a symmetrical all pole filter,
the ‘a trous’ fashion with (n; + 3)/2 multiplica- the z-transform of its up-sampled version
tions and n; + 1 additions per sample. [(@)~ '(k)]im can be written in the standard
The filter [g,]+, is defined by a vector ¢ of form
length n, (cf. Table 2). If the wavelet is symmet- A, (27" =
ric or anti-symmetric with n, odd, then this "
filter requires (n, + 1)/2 multiplications and do

.. nm —n, n—1 “km )
n, — 1 additions per sample. (2" 4+ 27" +(Ehs, el + 27" +co
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where dy and {¢,, k=0, ... ,n;, — 1} are con-
stant coefficients. The filter is then expressed as
a cascade of simple first-order causal/anti-
causal components

A, (2™ = do T] A 20),

i=1

where A(z™, z;) is defined as

m. pa— _ Zl.
A z) = (1 =2zz7™A — zz™

_ 1 -z
T \l—zz ")\l —zz")"

Values of dy and {z;,i = 1, ..., n;} for different
spline orders are given in Table 1.

Assuming that the input signal is
{x(k)}x=0. . n—1, the right-hand side of (26)
yields the following recursive filter equations:

yr(k) = x(k) + z;y" (k — m),

(26)

k=m,..,N—1, 27)
yk) = — zy" (k) + zy(k + m)
= zi(y(k + m) — y* (k)),
k=N—1-m,...,0. (28)

Fig. 4 shows the realization of the filter. In
order to calculate y*(k) recursively using
Eq. (27), we need to know y*(k) for
k=0, ...,m— 1. These initial values are com-
puted using

y7(k) = (a” *x)(k)

=Y x(k — mj)z/
jz0
ko '
= Z x(k — mj)z!
ji=0
(k=0,...,m—-1), (29)

where kg is chosen to ensure that z* is smaller
than some pre-specified level of precision.
In our application, we set ko = log(10~8)/
log(|z;]). Eq. (29) is typically computed by ex-
tending the signal by its mirror image, ie.,
x(—k)y=xk), k=0,...,N—1, and x(k) =
X2N -2 —k), k=N, .., 2N -1

a -za
1 ¥y -z
x l-zz" > 1-z7" y

Fig. 4. Implementation of an elementary IIR filter module.

The recursive computation of (28) also re-
quires y(k) to be known for k=N —1
—m, ...,N— 1. In order to obtain these
values, we rewrite Eq. (26) as

PIEc p— L1 1
ez (=)l —zz ™ 1 —zzZ"

= —_—ZZ—Z (A (") + A~ (™) — 1), (30)

(1 —z)
which suggests the following computation:
—Z 4+ —
= Tk k) —1). 31
y(k) (l_ziz)(y()+y() ) (31)

Specifically, we first calculate y~ (k) for k =
N—-1—-—m,...,N—1,asin Eq. (29), and then
use (31) to compute the m initial values for y(k).
Hence, with the proposed method, this basic
filtering operation requires 2N + 2kom addi-
tions and 2N + (2k, + 1)m multiplications.

4.3. Results and discussion

We implemented the algorithm for the wavelets

t s t
_ K _c‘(t/ao) /2’ < 5’
lpderiv([) = 0 e 79) oo =
0, otherwise,
wmax([) =
PN\ ey t
KO 1 — | — c (t/ao)’) _Kl’ —_— <5,
%o %o
0, otherwise,
where K, is a constant that insures that |y || = 1

and K, guarantees the admissibility of ., (cf.
Eq. (4)). The values of a, were selected to achieve
a worst-case error of ¢ = 0.01 as noted in Section 3.
The value of 2, is 2.69 for 4., and 3.32 for
Wmex When using a B-spline of degree 1. For a
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Fig. 5.(a) Anti-symmetric wavelet (line) and its linear least-squares approximation (small circles) at an rms error of 0.01. The large black
circles represent the spline knots. (b) Anti-symmetric wavelet (line) and its cubic least-squares approximation (small circles) at an rms

error of 0.01. The large black circles represent the spline knots.
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Fig. 6. (a) Mexican hat wavelet (line) and its linear least-squares approximation (small circles) at an rms error of 0.01. The large black
circles represent the spline knots. (b) Mexican hat wavelet (line) and its cubic least-squares approximation (small circles) at an rms error
of 0.01. The large black circles represent the spline knots.
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B-spline of degree 3 the value of z, i1s 1.25 for
Waeeiv and 1.40 for ... The wavelets are shown in
Figs. 5(a), (b) and 6(a), (b) with their linear and
cubic spline least-squares (LS) approximations.
The wavelets and their approximations are
virtually indistinguishable. We computed the
filters gq; (cf. Eq. (24)) for the case of Q = 12. This
provides a discretization of each octave that corres-
ponds to the musical notes (4, 4%, B,C,C¥*, ...).
The filter coefficients g; are contained in Table 2
for the cubic B-spline implementation of the
Ymex Wavelet.

Log2{scale}

Log2(scale)
~ .
4 N o

(%]

3.5

-100 -50 4] 50 100
(b) Time

Fig. 7. Wavelet transform of unit impulse of the anti-symmetric
wavelet for 12 voices per octave: (a) piecewise linear approxima-
tion; {b) cubic spline approximation.

The initialization approximation was used,
as given in Eq. (25) and the 2-scale filter [u5 (k)]s
was implemented using the zero-padded algorithm.
The impulse response of the system for each
of the wavelets is shown in Figs. 7(a),(b) and
8(a), (b).

As implemented, the sample values provide re-
dundant information about the signal. While this
redundancy is useful in signal analysis, in some
applications less information may be required, es-
pecially as the scale variable becomes large. To
reduce the amount of data, it may be desirable to

Log2(scale)

(a) ’ Time

¢

-

Log2(scale)

g

3.5

-100 -50 0 50 100
(b) Time

Fig. 8. Wavelet transform of unit impulse of the Mexican hat
wavelet for 12 voices per octave: (a) piecewise linear approxima-
tion; (b) cubic spline approximation.
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0 4 8 12 16 time
Log(o,) # ® ¢ @ o o ¢ o 0 o ¢ o 0 06 ¢ 0 &
© 0 0 0 6 0 0 060 00 0 0 0 0 0
o ® & ¢ o ¢ ©° o o o o o O ¢ » O
e & & & & & o o & & 0o & o o o
Log(a,)+1 9 + e . ° . . o - o °
. . . ° . . . .
. ¢« - o . . . o - o
T Y . o - o . * - o
Log, (@) +2 <. I .
. ° ° - - e
. - e . - e
. . o e e e . .
Log(ag)+3 ¢ = » - « - °« - - .
. . . . .
. . . . . . e
. . . - . . .

Log, (o)

Fig. 9. Sample values of CWT for the system with dyadic subsampling at each octave.

s (k) (k) —>@—> St (k)=sw{%,—)
2 =2"%
> g k) [ W a,2,2'k)
a'h) ok —e W_x(anzg“u,fk)
> gk [— W,s(aZm"’u,Z"k]

Fig. 10. System which performs dyadic subsampling at each
octave.

subsample at each scale. In this case, the sample
values in the time scale plane are as displayed in
Fig. 9. A system to implemented this algorithm is
shown in Fig. 10. The system is simpler than the
one in Fig. 1 which fills in the samples values
denoted by the small points in Fig. 9.

5. Conclusion

We have described a general procedure for the
fast evaluation of the continuous WT. The method
that was presented has the following attractive
features:

— The procedure can approximate any desired
wavelet shape. The filter coeflicients are deter-
mined by performing simple inner products.

— The number of operation per scale is O(N),
which is the lowest possible order of complexity.

— The method can provide arbitrary sampling
along the scale axis. It is especially useful for
computing more than one scale per octave.
The approximation error can be easily controlled
by either adjusting the fine scale resolution or
by selecting a scaling function with a higher
order of approximation. The behavior of the
approximation error has been characterized
asymptotically, and used in the design of the
wavelet filters.
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— The procedure as described provides the finest
possible sampling along the time dimension. The
system can be easily adapted for a less redundant
representation by dyadic subsampling within
each octave.
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Appendix A. Two-scale relationship between
octaves

In this appendix we derive the relationships
given in Eqgs. (20) and (21), which define the algo-
rithm. We wish to compute the samples

Ww(102i+ 1, k) = J

+ o0

sOFezn(t —kdr. (A1)

-

From Egs. (11) and (13) we have the following:

~ t t
l;axol"*‘(t) = %o (F) = Zk: Pa(k)(P <F - k),

(A2)

where p,(k) = (4., *(a) " (k).
A simple algebraic manipulation of Eq. (A.2)

yields Uzt () = L [2ak)] 12 (e k)27t ).
Substituting into Eq. (A.1) produces W, (202", k)

= ([Paliz+ *5i+1)(k), where

Si+1(k) = <S*(P(2—ltli>>

which is equivalent to Eq. (20).
Now consider the computation of s; . ; (k). From
property (1ii) we have

t t
o5t) = 5 o (- ).

which can be written as

, (A.3)

cp(z#) = (A% 02) (0, (A4)

where we have used the notation ¢,i(t) = ¢(t/2).

Substituting Eq. (A.4) into Eq. (A.3) leads to

Siv1(k) = [hlp % (s @2)(0) | =4 = ([hg* 5:) (),
which is equivalent to Eq. (21).

Appendix B. Strang-Fix conditions and least
squares approximation

In approximation theory, the standard way to
control the error is to vary the step size (or sampling
interval) h. The corresponding rescaled version
of our approximation subspace is Vi(p)=
span{@(x/h — k)},.z and the approximation of s at
the scale h is denoted by s,. As h gets smaller, the
approximation error | s — s, | generally descreases
and eventually becomes negligible as h goes to zero.
It turns out that the general behavior of this error as
a function of h depends on the ability of the func-
tions {@(x — k)},cz to reproduce polynomials up to
a certain degree n. This result is expressed by the
Strang-Fix [16] conditions, which relate the ap-
proximation power of the representation to the spec-
tral characteristics of the generating function ¢.
These conditions also play an important role in the
theory of the wavelet transform [17].

Strang-Fix conditions [16]. The following four
statements are equivalent:

(i) The function space V() reproduces all poly-
nomials up to degree n. Specifically, there exists
a function @;, € V(¢) (not necessarily unique)
that interpolates all polynomials p,(x) of de-
gree n:

VPn(X)e“"a Z pn(k)(ﬂint(x - k) = pn(x)-

keZ

(B.1)

(1) @(w), the Fourier transform of ¢, is non-van-
ishing at the origin and has zeros of at least
multiplicity (n + 1) at all non-zero frequencies
that are integer multiples of 2m.

(iii) There exists a function @;, € V() (the same as
in (B.1)) such that

VXER9 z (Pim(x - k) = 1’ (Bz)
keZ
VxeR, ), (x — kf"@imlx — k) =0,
keZ
m=1,....,n, (B.3)
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or equivalently,
Pint(21k) = 6[K], (B.4)
PMQ2rk) =0, m=1,....n, (B.5)

where @™ denotes the mth derivative of the
Fourier transform of ¢;,, with respect to w.

(iv) The approximation error at step size h is
bounded as

Vse W™D inf ||s — s, | < CH7 1| s0+ 0

spEVy
(B.6)

where W"* 1 is Sobolev's space of order
(n + 1), ie., the space of smooth functions
whose (n + 1) first derivatives are defined in
the L,-sense (bounded energy).

Remarks and comments

{a) By definition, the order of accuracy (or approxi-
mation power) of the representation is
L =n + 1 where n is the maximum degree for
which any of these conditions is satisfied. For
instance, polynomial splines of degree n have an
order of accuracy L =n + 1.

(b) Functions satisfying (B.1) are called quasi-inter-
polants. A particular example is the funda-
mental function (interpolator) which is one at
the origin and zero at all other integers.

(c) Egs. (B.2),(B.3) and (B.4), (B.5) form a discrete
Fourier transform pair since we are dealing
with periodized signals. The implication of (B.4)
and (B.5) is that the transfer function of a quasi-
interpolant is flat at the origin.

For our particular application, we would like to
get a better handle on the constant C in (B.6). For
this purpose, we can examine the behavior of the
error pointwise and determine the asymptotic be-
havior of || s — s, || as h becomes sufficiently small.
The main steps of this derivation are as follows; for
more details, we refer to [18].

We start by writing the least-squares approxima-
tion of the function se L, in V, as

sp(x) = ;LZ <S(}’), h‘éa(% — k>> @ (% - k)

=J s(y)h1K<%,%) dy, (B.7)
yeR

where K (x, y) is the reproducing kernel associated
with the approximation space V(o)

Kx.y) =Y ol —kp(y — k.

keZ
By using the Taylor series expansion of the signal
s(y) around x in (B.7), we can express the approxi-
mation error as

hL

s(x) — sp(x) = — I ey

(%) sH(x) + O,  (BS)
where s¥(x) is the Lth derivative of s and where

+ x
er(x) = f (v — x)FK(x, v)dy.
Note thus there are no lower-order terms in the error
since K(x, y) perfectly reproduces all polynomials
up to degree L — 1. The function e, (x) is zero-mean
with periodicity one. It is best characterized by its
Fourier series representation, which can be deter-
mined to be ep(x)=(— )Y, @V (2rk)el*™,
where @' denotes the Lth derivative of the Fourier
transform of ¢. Interestingly, this formula is valid
for any @ € V() such that $(0) = 1 (not just quasi-
interpolants).

For h sufficiently small, the O(h*"') terms in
(B.8) become negligible and the L,-norm of the
error has the following asymptotic form:

lim

X
sB(x)e (—) }
o ht “\h

Note that ey (x/h) is periodic with period h and that
its square modulus is given by

s =il _ 1
Ly

1 h 1
IAJ lep(x/h)|*dx = f lep(x)|* dx
1 Jo 0

= Y ¢ (2nk)|*.
k#0
As the period decreases (h — 0), s'“(x) can be ap-
proximated as a constant within each interval
which leads to the derivation of the following
asymptotic limit [187:

foo 18 =5
L
o B

=Cy s, (B.9)
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where
1 1/2

C, :B< Z {¢‘L’(2nk)|2> . (B.10)
*\k#0
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